
r RDAf64 996 THE XNPLEMENTATION OF A NETNORK CODRISYL-DAIL INTERFACE V
FOR THE NULTI-LINSUAL DATABASE SYSTEN(U) NAVAL
POSTGRADUATE SCHOOL MONTEREY CA B ENDI 19 DEC 85

UNCLSSIFIED F/ 92 NL

1. L' 8 .

S4L3-2
W. 11.

4jj.

aL Igo

111.6.

MICROOPY ESOLTIONTESTCHA-

zC

I~. AO-.

NAVAL POSTGRADUATE SCHOOL
CD Monterey, California

THESIS

THE IMPLEMENTATION OF A NETWORK
GODASYL-DML INTERFACE FOR THE MULTI-LINGUAL

O DATABASE SYSTEM

~LJ by

k Am Bulent EMDI

December 1985 e

Fhesis Advisor: David K. Hsiao

Approved for public release; distribution is unlimited

z-~

sEcurrv CLASSIFICATION OF THIS PAGE 4? - / /

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb. RESTRIL'IIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2b.DECL.ASSIFICATINIOWNGR,,DIN,_ SCHEDULE distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6* NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (if apoicable)

52 Naval Postgraduate School
6c ADDRESS (City. State, and ZIPCoOr) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, California 94943-5100 Monterey, CA 93943-5100

8B NAME OF FUNDING/SPONSORING Ob. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
RGANIZATION (If applicable) t. .

8 ADDRESS (City. State. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO. NO. ACCESSION NO.

T : T L E (include Security Classification)
THE IMPLEMENTATION OF A NETWORK CODASYL-DML INTERFACE FOR THE MULTI-LINGUAL

DATABASE SYSTEM (UNCLASSIFIED)
SPERSONAL AUTHOR(S)

EMDI, Emd i
3a TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) IS PAGE COUNT
;taster's Thesis FROM TO 1985 December 19 127

'6 SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Multi-lin'jal Database System (MLDS), Multi-backen

Database System (MBDS), Network Data Model, Data)
Lanua e CODASYL-DML, Attribute-based Data (Cont).4

"9 .ABSTRACT (Continue on reverse if necessary and identify by block number)

Traditionally, the design and implementation of a conventional database
system begins with the selection of a data model, followed by the specifica-
tion of a model-based data language. An alternative to this traditional
approach to database system development is the multi-lingual database sys-
tem (MLDS). This alternative approach affords the user the ability to ac-
cess and manage a large collection of dajabases via several data models and
their corresponding data languages.
>11 this thesis-e present5the specificat ion and implementation of an inter-
face which translates CODASYL-DML data anguage calls into attribute-

-based data lnguage (ABDL) requests. Wke describeAthe software engineering -
aspects of 64 implementation and an overview of the four modules which
comprise our CODASYL-DML language interface.

4

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
OUJNCLASSIFIEDUNLIMITED 0 SAME AS RPT. 03 OTIC USERS UNCLASS F I ED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TeLePHONE (Inlud Area Coe) 22c. OFFICE SYMBOL .. m
David K. Hsiao 408 646-2253 52Hq

DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE'S'S'S
All other editions are obsolete

%1

S C U IT ; C L A SSIPIC A TIO N O F T o IS P A G a (fl e 0 t l a reo aBlock # 18 (Continued):i;

Language (ABDL), Language Interface

';t

2 SICUNITY CLAS0PICATOW OF TH1 PAG9Wt O& &we*

* * ~*r.~.\---------------------10

Approved for Public Release, Distribution Unlimited.

The Implementation of a Network

CODASYL-DML Interface for the

Multi-Lingual Database System

by

Bulent Emdi ,

Ltjg, Turkish Navy
Accession For

B.S., Turkish Naval Academy, 1978 NI P~

DTTC TPA

Submitted in partial fulfillment of the t ~ ___

requirements for the degree of.

MASTER OF SCIENCE IN COMPUTER SCIENCE ,. .-

from the Dist

NAVAL POSTGRADUATE SCHOOL

December 1985

Author: 0!3C~

Builent Emdi ~b

1~Da~S.K~Hsiao, Thesis Advisor

Steven. Demtfrjian, Sc d eadAer

Vincent 1(. Lum, Chairman,
4 Department of Coin u r Science

Dean of Informnation andPolicy ciences

3

'111111.' I 13 1

- ,-. k - V _ .__ . --

ABSTRACT

Traditionally, the design and implementation of a conventional database

system begins with the selection of a data model, followed by the specification of

a model-based data language. An alternative to this traditional approach to - ,

database system development is the multi-lingual database system (MLDS). This

alternative approach affords the user the ability to access and manage a large

collection of databases via several data models and their corresponding data

languages.

In this thesis we present the specification and implementation of a network

CODASYL-DML language interface for the MLDS. Specifically, we present the .

* specification and implementation of an interface which translates CODASYL-

' DML data language calls into attribute-based data language (ABDL) requests.

We describe the software engineering aspects of our implementation and an

-. overview of the four modules which comprise our CODASYL-DML language

"" interface.

'.. I

4
4

W. -. d -T -V"O WT.V -. W -717T lIV

TABLE OF CONTENTS

INTRO DUCTION ... 10

A . M O T IV ATIO N ... 10

B. THE MULTI-LINGUAL DATABASE SYSTEM 11

C. THE KERNEL DATA MODEL AND LANGUAGE 13 WP

D. THE MULTI-BACKEND DATABASE SYSTEM 14

E. THESIS OVERVIEW .. 15

II. SOFTWARE ENGINEERING OF A LANGUAGE

IN T E R F A C E .. 17

A. D ESIG N G O A LS .. 17

B. AN APPROACH TO THE DESIGN 17

1. The Implementation Strategy .. 17

2. Techniques for Software Development o 18

3. Characteristics of the Interface Software 19

C. A CRITIQUE OF THE DESIGN 21

D. THE DATA STRUCTURE .. 22

1. Data Shared by All Users .. 22

Specific to Each User .. 26

E. THE ORGANIZATION OF THE NEXT FOUR

C H A PT ER S .. 28

III. THE LANGUAGE INTERFACE LAYER (LIL) 29

A. THE LIL DATA STRUCTURES .. 29

B. FUNCTIONS AND PROCEDURES 31 :7'

1. Initialization ... 31

2. Creating the Transaction List ... 31

'° 5

.
IVI

3. Accessing the Transaction List.................................. 32

a. Sending schema definitions to KMS 33

b. Sending CODASYL-DML Requests to KMS 33

4. Calling KC ... 33 .

5. Wrapping-up... 34

IV. THE KERNEL MAPPING SYSTEM (KMS) 35

A. AN OVERVIEW OF THE MAPPING PROCESS.............. 35

1. The KMS Parser/ Translator 35

2. The KMS Data Structures.. 36

B. FACILITIES PROVIDED

BY THE IMPLEMENTATION 44

1. Database Definitions .. 44

2. Database Manipulations.. 46

a. The Mapping Processes: An Example 46

V. THE KERNEL CONTROLLER....................................... 52

A. THE KC DATA STRUCTURES 52

B. FUNCTIONS AND PROCEDURES.............................. 56

1. The Kernel Controller .. 56

2. Creating a New Database .. 56

3. The FIND Requests... 56

4. The Modify, Connect, and

Disconnect Requests.. 58

5. The Move Request ... 58

6. The Store Request ... 58

.' ** ~ .* --~ --- '..-A... -W..

9 11 . W-Zvl.Po W

7. The Erase Request ... 60

8. The Get Request.. 6 ... 1

VI. THE KERNEL FORMATTING SYSTEM (KFS) 62

A. THE KFS DATA STRUCTURE.................................. 62

B. THE FILING OF CODASYL-DML RESULTS 63

C. THE KFS PROCESS.. 63

VII. CONCLUSION... 64

APPENDIX A - THE LIL PROGRAM SPECIFICATIONS 66

APPENDIX B - THE KMS PROGRAM SPECIFICATIONS........... 73

APPENDIX C - THE KC PROGRAM SPECIFICATIONS............. 102

APPENDIX D - THE CODASYL-DML USERS' MANUAL............ 118 ~

LIST OF REFERENCES... 123 ..

INITIAL DISTRIBUTION LIST .. 125

7~ -

LIST OF FIGURES

Figure 1. The Multi-Lingual Database System 12

Figure 2. The Multi-Backend Database System 15

Figure 3. Data Structure Diagram of the Sample

Suppliers-and-Parts Database 16

F S........................o.......o .. .

Figure 4. The dbid node Data Structure 22
Figure 5. The net dbid node Data Structure 23 ".'.-.-"

Figure 6. The nrec node Data Structure 24

Figure 7. The set slenode Data Structure 24
Figure 8. The nset_node Data Structure 25

Figure 9. The sert tnode Data Structure 26

Figure 10. The usir_info Data Structure 27

Figure 12. The uI info Data Structure 2

Figure 12. The dm_ info Data Structure 28

Figure 13. The t a info Data Structure 30--Fgue 4.Th°nt°eq-nf.DtaStucur o.......30°.

Figure 15. The netkms info Data Structure 37

Figure 16. The ndup-node Data Structure....... 37

Figure 17. The Move list Data Structures 38

Figure 18. The select list Data Structure 38

Figure 19. The connectlist Data Structure............................. 39

Figure 20. The abd req Data Structure 39

Figure 21. The member erase Data Structure 40

Figure 22. The erase abdli Data Structure 40

Figure 23. The findlabd Data Structures 41

8
,'.,.,,

Figure 24. The store abdI Data Structures 42

Figure 25. The getnode Data Structure 43

Figure 26. The Network Database Schema 46

Figure 27. The KMS dm1 statement Grammar 48

Figure 28. The dml info Data Structure 53

Figure 29. The cur table Data Structure 54

Figure 30. The net file info Data Structure55

Figure 31. The kfs net info Data Structure 62

Y...t

V -- .

..;:,::

4% Il

9,.

I. INTRODUCTION

A. MOTIVATION

During the past twenty years database systems have been designed and

implemented using what we refer to as the traditional approach. The first step in

the traditional approach involves choosing a data model. Candidate data models

include the hierarchical data model, the relational data model, the network data

model, the entity-relationship data model, and the attribute-based data model to

name a few. The second step specifies a model-based data language, e.g., DL/I

for the hierarchical data model, or Daplex for the entity-relationship data model.

A number of database systems have been developed using this

methodology. For example, IBM introduced the Information Management

System (IMS) in the sixties, which supports the hierarchical data model and the

hierarchical-model-based data language, Data Language I (DL/I). Sperry Univac

introduced the DMS-1100 in the early seventies, which supports the network data

model and the network-model-based data language, CODASYL Data

Manipulation Language (CODASYL-DML). And more recently, there has been

IBM's introduction of the SQL/Data System which supports the relational model .

and the relational-model-based data language, Structured English Query

Language (SQL). This traditional approach to database system development has -

resulted in homogeneous database systems that restrict the user to a single data

model and a specific model-based data language.

An unconventional approach to database system development, referred to

as the Al ulti-lingual Database System (MLDS) [Ref. 11, alleviates the

aforementioned restriction. This new system affords the user the ability to access

and manage a large collection of databases via several data models and their

corresponding data languages. The design goals of MLDS involve developing a

system that is accessible via a hierarchical/DL/I interface, a relational/SQL

interface, a network/CODASYL/DML interface, and an entity-

relationship/Daplex interface.

10

%!,
-'.,'.2--, .-2:,Sa':v _.-:. • ".-. ' -. ''. . .. "". .'- ' ' - . ":" -"--" -'£ "a : " ' " -: -2'-F , ,2, .; 2 .e.?: ," .- , . . , .,, i. . .-.

--- , . .rrTo , , , , ' -.- w -- .. • .-w-.-vrt .r•rr ' -- - . . v -.

There are a number of advantages in developing such a system. Perhaps

the most practical of these involves the reusability of database transactions

developed on an existing database system. In MLDS, there is no need for the

user to convert a transaction from one data language to another. MLDS also

. permits the running of database transactions written in different data languages.

Therefore, the user does not have to perform either manual or automated

translation of existing transactions in order to execute a transaction in the

MLDS. MLDS provides the same results even if the data language of the

transaction originates at a different database system.

A second advantage deals with the economy and effectiveness of hardware

upgrade. Frequently, the hardware supporting the database system is upgraded

because of technological advancements or system demand. With the traditional

approach, this type of hardware upgrade has to be provided for all of the

different database systems in use, so that all of the users may experience system

performance improvements. This is not the case in MLDS, where only the

upgrade of a single system is necessary. In MLDS, the benefits of a hardware

upgrade are uniformly distributed across all users, despite their use of different

models and data languages.

Thirdly, a multi-lingual database system allows users to explore the

desirable features of the different data models and then use these to better

support their applications. This is possible because MLDS supports a variety of

databases structured in any of the well-known data models.

It is apparent that there exists ample motivation to develop a multi-

lingual database system with many data model/data language interfaces. In this

thesis, we are developing a network(CODASYL) language interface for the

MLDS. We are extending the work of Banerjee [Ref. 21 and Wortherly [Ref. 3],

who have shown the feasibility of this particular interface in a MLDS.

B. THE MULTI-LINGUAL DATABASE SYSTEM

A detailed discussion of each of the components of the MLDS is provided

in subsequent chapters. In this section we provide an overview of the

organization of MLDS. This assists the reader in understanding how the different

components of MLDS are related.
::LI

" 1C
................

* -. .*..

* . .wI . ". ". "• ". " • " " ." • ".b , •...•...'..•......•."..........."..........".".".....,....•....."-.".•.".-......-...-.--."."...."...,'......-.....-...,,,......."o,,

'U .' - . - -r •% .

L" "* ,o.h

Figure 1 shows the system structure of a multi-lingual database system.

The user interacts with the system through the language interface layer (LIL),

using a chosen user data model (UDM) to issue transactions written in a

corresponding model-based user data language (UDL). The LIL routes the user

transactions to the kernel mapping system (KMS). The KMS performs one of

two possible tasks. First, the KMS transforms a UDM-based database definition -

to a database definition of the kernel data model (KDAM), when the user specifies

that a new database is to be created. When the user specifies that a UDL

transaction is to be executed, the KMS translates the UDL transaction to a

transaction in the kernel data language (KDL). In the first task, KMS forwards

the KDM data definition to the kernel controller (KC). KC, in turn, sends the

KNIo

-KFS

UDM User Data Model
UDL User Data Language
LIL Language Interface Layer
KNIS Kernel Mapping System V

KC Kernel Controller
KFS Kernel Formatting System
KDM Kernel Data Model
KDL Kernel Data Language
KDS Kernel Database System

-Z%

Figure 1. The Multi-Lingual Database System.

12

KDM database definition to the kernel database system (KDS). When KDS is

finished with processing the KDM database definition, it informs the KC. KC

then notifies the user, via the LIL, that the database definition has been

processed and that loading of the database records may begin. In the second

task, KMS sends the KDL transactions to the KC. When KC receives the KDL

transactions, it forwards them to KDS for execution. Upon completion, KDS

sends the results in KDM form back to the KC. KC routes the results to the

kernel formatting system (KFS). KFS reformats the results from KDM form to

UDM form. KFS then displays the results in the correct UDM form via LIL.

The four modules, LIL, KMS, KC, and KFS, are collectively known as the

language interface. Four similar modules are required for each of the other .-

language interface of MLDS. For example, there are four sets of these modules

where one set is for the hierarchical/DL/I language interface, one for the

relational/SQL language interface, one for the network/CODASYL/DML

language interface, and one for the entity-relationship/Daplex language interface.

However, if the user writes the transaction in the native mode (i.e., in KDL),

there is no need for an interface.

In our implementation of the network(CODASYL) language interface, we

develop the code for the four modules. However, we do not integrate these

modules with KDS as shown in Figure 1. The Laboratory of Database Systems

Research at the Naval Postgraduate School is in the process of procuring new

computer equipment for KDS. When the equipment is installed, KDS is to be

ported over to the new equipment. MLDS software is then to be integrated with

KDS. Although not a very difficult undertaking, it may be time-consuming.

C. THE KERNEL DATA MODEL AND LANGUAGE
The choice of a kernel data model and a kernel data language is the key

decision in the development of a multi-lingual database system. The overriding

question, when making such a choice, is whether the kernel data model and

kernel data language is capable of supporting the required data-model

transformations and data-language translations for the language interfaces.

The attribute-based data model proposed by Hsiao [Ref. 41, extended by

Wong [Ref. 5], and studied by Rothnie [Ref. 6], along with the attribute-based

13

-7

data language (ABDL), defined by Banerjee [Ref. 7], have been shown to be
acceptable candidates for the kernel data model and kernel data language,

respectively.

Why is the determination of a kernel data model and kernel data language

so important for a MLDS? No matter how multi-lingual MLDS may be, if the

underlying database system (i.e., KDS) is slow and inefficient, then the interfaces

may be rendered useless and untimely. Hence, it is important that the kernel

data model and kernel language be supported by a high-performance and great- 77,

capacity database system. Currently, only the attribute-based data model and

the attribute-based data language are supported by such a system. This system ".-.

is the multi-backend database system (MBDS) [Ref. 1].

D. THE MULTI-BACKEND DATABASE SYSTEM

The multi-backend database system (MBDS) has been designed to

overcome the performance problems and upgrade issues related to the traditional b-.1

approach of database system design. This goal is realized through the utilization

of multiple backends connected in a parallel fashion. These backends have

identical hardware, replicated software, and their own disk systems. In a

multiple backend-configuration, there is a backend controller, which is responsible

for supervising the execution of database transactions and for interfacing with the

hosts and users. The backends perform the database operations with the

database stored on the disk system of the backends. The controller and backends

are connected by a communication bus. Users access the system through either -

the hosts or the controller directly (see Figure 2). S'

Performance gains are realized by increasing the number of backends. If

the size of the database and the size of the responses to the transactions remain

... constant, then MBDS produces a reciprocal decrease in the response times for the

user transactions when the number of backends is increased. On the other hand,

if the number of backends is increased proportionally with the increase in

databases and responses, then MBDS produces invariant response times for the

same transactions. A more detailed discussion of MBDS is found in [Ref. 8].

I. 14

II Backend Store I

II

I Backend >

oProcessor 1

Backend Store 2 *-

Backend

To a Backend L
Host Controller

Backend Store M

Processor M

Communications

Bus

Figure 2. The Multi-Backend Database System.

E. THESIS OVERVIEW

The organization of our thesis is as follows: In Chapter II, we discuss the

softm are engineering aspects of our implementation. This includes a discussion of ,

our design approach, as well as a review of the global data structures used for the

implementation. In Chapter 111, we outline the functionality of the language

interface layer. In Chapter IV, we articulate the processes constituting the kernel

mapping system. In Chapter V, we provide an overview of the kernel controller.

In Chapter VI, we describe the kernel formatting system. In Chapter VII, we

conclude the thesis.

The detailed specifications of the interface modules (i.e., LIL, KMS, and
KC) are given in Appendices A, B, and C, respectively. Appendix D is a users'

manual for the system. The specifications of the source data language,

,o................S

CODASYL-DML, and the target data language, ABDL, is found in

[Ref. 9: pp. 389-446] and [Ref. 7], respectively.

Throughout this thesis, we provide examples of CODASYL-DML requests ",'.'

and their translated ABDL equivalents. All examples involving database

, operations presented in this thesis are based on the Suppliers and Parts sample

* database used by Date [Ref. 9: pp. 389-446]. The data structure diagram for this

network is shown in Figure 3. There are supplier records (S), parts records (P),

and shipments (SP) records. The sets of the database are suppliers-shipments (S-
SP) and parts-shipments (P-SP).

S P
+ + ++ .

suppliers i I parts

*- .*F

-~~~t ------- -

s-sPI P-sPI.-'.

Sship m e n t s

Figure 3. Data Structure Diagram of the Sample
Suppliers-and-Parts Database. '',

' -.v

...

~ *~ .* * .

- - - - . -" -. .

II. SOFTWARE ENGINEERING OF A LANGUAGE INTERFACE

In this chapter, we discuss the various software engineering aspects of -..

developing a language interface. First, we describe our design goals. Second, we

outline the design approach that we took to implement the interface. Included in
* 4

this section are discussions of our implementation strategy, our software

development techniques, and salient characteristics of the language interface

software. Then, we provide a critique of our implementation. Fourth, we

describe the data structures used in the interface. And finally, we provide an *..4

organizational description of the next four chapters.

A. DESIGN GOALS

We are motivated to implement a CODASYL-DML interface for a MLDS _

using MBDS as the kernel database system, the attribute-based data model as

the kernel data model, and ABDL as the kernel data language. It is important

to note that we do not propose changes to the kernel database system or

language. Instead, our implementation resides entirely in the host computer. .
All user transactions in CODASYL-DML are processed in the CODASYL-

DML interface. MBDS continues to receive and process requests in the syntax

and semantics of ABDL.

In addition, we intend to make our interface transparent to the user. For

example, an employee in a corporate environment with previous experience

with CODASYL-DML could log onto our system, issue a CODASYL-DML

request and receive result data in a network format, i.e., a record. The -

employee requires no training in ABDL or MBDS procedures prior to utilizing

the system.

B. AN APPROACH TO THE DESIGN

1. The Implementation Strategv

There are a number of different strategies we might have employed in

the implementation of the CODASYL-DML language interface. For example,

- . ~17 B

there are the build-it-twice full-prototype approach, the level-by-level top-down

approach, the incremental development approach, and the advancemanship

approach [Ref. 10: pp. 41-46]. We have predicated our choice on minimizing

the "software-crisis" as explained by Boehm [Ref. 10: pp. 14-31].

The strategy we have decided upon is the level-by-level top-down

approach. Our choice is based on, first, a time constraint. The interface has

to be developed within a specified time, specifically, by the time we

graduate. And second, this approach lends itself to the natural evolution of

the interface. The system is initially thought of as a "black box" (see Figure 1)

that accepts CODASYL-DML transactions and then returns the appropriate

results. The "black box" is then decomposed into its four modules (i.e.,

LIL, KMS, KC, and KFS). These modules, in turn, are further decomposed

into the necessary functions and procedures to accomplish the appropriate

tasks.

2. Techniaues for Software Development

In order to achieve our design goals, it is important to employ "

effective software engineering techniques during all phases of the software

development life-cycle. These phases, as defined by Ledthrum [Ref. 11: p. 27],

are as follows:

(1) Requirements Specification - This phase involves stating the purpose of
the software: what is to be done, not how it is to be done.

(2) Desi&n - During this phase an algorithm is devised to carry out the
specification produced in the previous phase. That is, how to *>
implement the system which is specified during this phase.

(3) Coding - During this phase the. design is translated into a programming
language.

(4) Validation - During this phase it is ensured that the developed system
functions as originally intended. That is, it is validated that the system
actually performs what it is supposed to do.

The first phase of the life-cycle has already been performed. The

research done by Demurjian and Hsiao [Ref. 11 has described the motivation,

goals, and structure of the MLDS. The research conducted by Wortherly

[Ref. 3] has extended this work to describe in detail the purpose of the

CODASYL-DML interface. Hence, the requirements specification is derived

from the above research.

18

r~rrrx' rv-v.--.- - .-. - .

We have developed the design of the system using the above

specification. A Systems Specification Language (SSL) [Ref. 12] is used

extensively during this phase. The SSL has permitted us to approach the design

from a very high-level, abstract perspective by

(1) enhancing communications among the program team members,

(2) reducing dependence on any one individual, and

(3) producing complete and accurate documentation of the design.

Furthermore, the SSL has allowed us to make an easy transition from the

design phase to the coding phase.

We have used the C programming language [Ref. 13] to translate the

design into executable code. Initially, we were not conversant in the language.

However, our background in Pascal and the simple syntax of C have made it

easy for us to learn. The greatest advantage of using C is the programming

environment that it resides (i.e., the UNIX operating system). This

environment has permitted us to partition the CODASYL-DML interface and

then manage these parts in an effective and efficient manner. Perhaps, the

only disadvantage with using C is the poor error diagnostics, having made

debugging difficult. There is an on-line debugger available for use with C in

UNIX for debugging. We have avoided this optioi. and instead used

conditional compilation and diagnostic print statements to aid in the

debugging process. To validate our system we have used a traditional

testing technique, i.e., path testing [Ref. 14]. We have tested those cases -

considered "normal". It is noteworthy to mention that testing, as we have 'e

done it, does not prove the system correct, but can only indicate the absence

of problems with the cases that have been tested.

3. Characteristics of the Interface Software

In order for the CODASYL-DML interface to be successful, we have

realized that it must be well designed and well structured. Hence, we are

cognizant of certain characteristics that the interface must possess. Specifically, -

it must be simple. In other words, it must be easy to read and comprehend.

The C code we have written has this characteristic. For instance, we often

write the code with extra lines to avoid shorthand notations available in C.

19

-- i-.

These extra lines have made the difference between comprehensible code and

cryptic notations.

The interface software also must be understandable. This must be

true to the extent that a maintenance programmer, for example, can easily grasp

the functionality of the interface and the relation between it and the other

pieces of the system. Our software possesses this characteristic and does not

have any hidden side-effects that could pose problems months or years from now.

As a matter of fact, we have intentionally minimized the interaction between --.-

procedures to alleviate this problem.

The interface must also be maintainable. This is important in light of

the fact that almost 70% of all of the software life-cycle costs are incurred after

the software becomes operational, i.e., in the maintenance phase. There are

software engineering techniques we employed that have given the CODASYL-

DML interface this characteristic. For example, we require programmers to

document changes to the interface code when the changes are made. Hence,

maintenance programmers have current documentation at all times. The

problem ur trying to figure out the functionality of a program with dated

documentation is alleviated. We also required the programmers to update their

SSL specification as the code is being changed. Thus, the SSL specification

consistently corresponds to the actual code. In addition, the data structures are

designed to be general. Thus, it is an easy task to modify or rectify these

structures to meet the demands of an evolving system.

The research conducted by Demurjian and Hsiao [Ref. I provides a "

high-level specification of the MLDS. The thesis written by Wortherly [Ref. 3] : ,.

extends the above work and provides a more detailed specification of a

CODASYL-DML language interface. This thesis outlines the actual

implementation of a CODASYL-DML interface. The appendices provide the

SSL design for this implementation.

A final characteristic that a CODASYL-DML interface should have is

extensibility. A software product must be designed in a manner that permits

the easy modification and addition of code. In this light, we have placed "stubs"

in the correct locations of the KFS to permit the easy insertion of the code

20

needed to handle multiple horizontal screens of output. In addition, we have

designed our data structures in such a manner that will permit subsequent

programmers to easily extend them to handle not only multiple users, but also

other language interfaces.

C. A CRITIQUE OF THE DESIGN

Our implementation of the CODASYL-DML interface possesses all of the

elements of a successful software product. As noted previously, it is simple,

understandable, maintainable, and extensible. Our constant employment of

modern software engineering techniques have ensured its success.

Howe. -r, there are two techniques that are especially worthy of critique.

The first of these is the use of SSL. Initially, we have felt that the

implementation language may also serve as the language to specify program

algorithms. However, in doing so, we have stifled our creativity. This is because

we are concentrating not only on what the algorithm does, but also on what the

constructs (data structures) of the algorithm are. The use of SSL has permitted

us to concentrate on the functionality of the algorithm without a heavy

concentration on its particular constructs. This has allowed us to view the

algorithm in a detached manner so that the most efficient implementation

for the constructs can be used. Although we initially felt that the

development of the program with SSL may be too time-consuming, our opinions

changed when we realized the advantages of SSL, and the overall complexity of

the CODASYL-DML language interface itself.

The way in which the data structures are designed is the other

noteworthy software engineering technique. We have made extensive use of

structures which are bound at compile time. We soon realize that in doing so, ;.:.

the computing resources (e.g., disk space) of the system are being depleted

quite rapidly. Therefore, it is necessary for us to design the data structures in

such a way that they can be managed in a dynamic fashion. Therefore, most of

the data structures of the CODASYL-DML interface are linked lists. This

design affords us the most convenient way to efficiently utilize the resources of

the system. It is an easy task to use the C language's malloc (memory

allocate) function to dynamically create the elements of a list as we need them.

21

In addition, the free command is useful in releasing these same elements for

subsequent use.

D. THE DATA STRUCTURE

The CODASYL-DML language interface has been developed as a single user

system that at some point will be updated to a multi-user system. Two different

concepts of the data are used in the language interface : (1) Data shared by all

users, and (2) Data specific to each user. The reader must realize that the

data structures used in our interface and described below have been "--:'

deliberately made generic. Hence, these same structures support not only our

CODASYL-DML interface, but the other language interfaces as well i.e., DL/I,

SQL, and Daplex.

1. Ik ta Shared by All Users

The data structures that are shared by all users are the database

schemas defined by the users thus far. In our case, these are network

schemas, consisting of sets and attributes. These are not only shared by all

users, but also shared by the four modules of the MLDS, i.e., LIL, KMS, KC,

and KFS. Figure 4 depicts the first data structure used to maintain data. It is

important to note that this structure is represented as a union. Hence, it is

generic in the sense that a user can utilize this structure to support SQL, DL/I,

CODASYL-DML, or Daplex needs. However, we concentrate only on the
network(CODASYL) model. In this regard, the third field of this structure

points to a record that contains information about a network(CODASYL) .

database. Figure 5 illustrates this record. The first field is just a character array **.. *

union dbid node

struct rel dbid node *rel;
struct hie dbid node *hie;
struct net dbid node *net;
struct ent dbid node *ent;

Figure 4. The dbid node Data Structure.

22

".o .v

struct net dbid node

char name[DBNLength + 1];
int num set;
int num rec;
int dbkey;
struct nset node *first set;
struct nset node *curr set;
struct nrec node *first rec;
struct nrec node *curr rec;
struct net dbid node *next db;

Figure 5. The net dbid node Data Structure.

containing the name of the network database. The second and third fields

contain an integer value representing the number of sets and the number of

record types in the database. The fourth field also contains an integer value to

give a different dbkey value to each record in the database. The fifth, sixth,

seventh and ninth fields are pointers to other records containing information

about each set and each record type in the database. Specifically, the fourth and A.
sixth fields points to the first set. and the first record type in the database while

the fifth and seventh fields point to the current set and the current record type

being accessed. The final field is just a pointer to the next network database.

The data structure nrec node contains information about each record

type in the database (see Figure 6). This structure is organized in much the

same fashion that the net dbid node is organized. The first field of the data
structure holds the name of the record type. The next field contains the number

r
of attributes in this particular record type. The third and fourth fields point to

other record types which contain data on the first and current attribute of . I.'

this record type. And finally, the last field is a pointer to the next record type

in this database.

The data structure nset node contains information about each set in the
d.-

database (see Figure 7). The first field of the structure holds the name of the set.

The second field contains the owner name of this set. The third field contains the

23
iS

..* .*. -..,4

IF-I.I.-.-..V-.

struct nrec node

char name[RNLength + 1];
int mum attr;
struct nattr node *first attr;
struct nattr node *curr attr;
struct nrec node *next rec; -.

Figure 6. The nrec node Data Structure.

struct nset node

char name[SNLength + 1];
char owner name[ONLength + 1];
char member name[MNLength + 1];
char insert mode[INLength + 1];
char retent mode[RLength + 1];
struct set select node select mode;
struct nrec node *owner;

struct nrec node *member;
struct nset node *next set;

Figure 7. The nset node Data Structure.

member name of this set. The fourth and fifth fields serve as a flag to indicate

the insertion and the retention mode. For instance, an insertion mode for a

member record of a set can either be automatic or manual. Therefore,the
t

characters "a", and "m" are used, respectively. The retention mode for a member

record of a set can either be fixed, mandatory, or optional. Thus, the characters

"f, "mi", and "o" are used, respectively. The sixth field of this structure is a

pointer to a data structure containing information about the set selection mode.

The seventh field is a pointer to the owner record type of this set type. The

eighth field is a pointer to the member record type of this set type. The final

field is just a pointer to the next set type in the database.

24 .1-

• % *% %. .-Z**

The data structure set select node contains information about the set

selection mode for each set in the database(See Figure 8). The first field serves

as a flag to indicate the set selection mode. For instance, a set selection mode of

a set type can either be by VALUE, by STRUCTURAL, by APPLICATION, or

not specified. The characters "V", "S", "A", and "0" are used, respectively. If

the set selection mode is by VALUE or by STRUCTURAL, the second field

holds the item name of the specified record and the third field holds the name of

the record. If the set selection mode is by STRUCTURAL, the fourth field holds

the name of the second record , which is specified in the case of a by

STRUCTURAL set selection criterion.

Figure 9 shows the organization of the final data structure used to

support the definition of the network database schema. This structure contains

information about the attributes of each CODASYL record type. The first field is

an array, holding, the name of the attribute. The second field holds the level

number of this attribute, and the third field serves as a flag to indicate the

attribute type. For instance, an attribute can either be an integer, a floating

point number, or a string. The characters "i", "f", and "s" are used,

respectively to represent these types. The fourth field indicates the maximum

length that a value of this attribute type may possibly have. For example, if

this field is set to ten, and the type of this attribute is a string, then the

maximum number of characters that a value of this attribute type may have is

ten. The fifth field indicates the maximum length of the decimal portion of this

attribute, if the type of this attribute is floating point. The sixth field is also a

struct set select node

char select mode[SLength + 1];
char item name[ANLength + 1];
char recordi name[RNLength + 1];
char record2 name[RNLength + 11;

*. Figure 8. The set select node Data Structure.

25

.. 2 -..

I 4* .p,

struct nattr node

char name[ANLength + 1];
char level num[ALLength + 1];
char type;
int length1;
int length2;
int dup flag;
struct nattr node *next attr;
struct nattr node *child;
struct nattr node *parent;

Figure 9. The nattr node Data Structure.

flag used to indicate whether or not this particular attribute can have

duplicates. The seventh field is a pointer to the next attribute in this record. If

the level number of an attribute is bigger than the previous level number, then

the eighth field is used to reference a data structure that contains information on

the child of the current attribute. If the level number of an attribute is less than

the previous level number, then the ninth field is used to reference a data

structure that contains information on the parent of the attribute. The reader

may refer to Appendices A through C to examine how these data structures are

used in SSL.

2. Data Specific to Each User

This category of data represents information needed to support each

user's particular interface needs. The data structures used to accomplish

* this can be thought of as forming a hierarchy. At the root of this hierarchy is

the data structure, user info, that maintains information on all of the current

users of a particular language interface (see figure 10). The user info data

structure holds the ID of the user, a union that describes a particular interface,

arid a pointer to the next user. The union field is of particular interest to us.

As noted efrlier, a union serves as a generic data structure. In this case, the . - .

union can hold the data for a user accessing either a CODASYL-DML language

interface layer(LIL), a DL/I LIL, an SQL LIL, or a Daplex LIL. The li info

union is shown in Figure 11.

26
", ..

**.

.%

struct user info

char uid[UIDLength + 1];
union li info li type; N.
struct user info *next user;

Figure 10. The user info Data Structure.
j6

union li info

struct sql info sql;
struct dli info dli;
struct dml info dml;
struct dap info dap;

Figure 11. The li info Data Structure.

We are only interested in the data structures containing user

information which relates to the CODASYL-DML language interface in this

section. The structure used is referred to as dml info and is depicted in Figure .. *..

12. The first field of this structure, curr db info, is itself a data structure and "

contains currency information on the database being accessed by a user. The

second field, file, is also a data structure. The file data structure contains the file
descriptor and file identifier of a file of CODASYL-DML transactions, i.e., either

queries or creates. The next field, dml tran, is also a data structure, and

holds information that describes the CODASYL-DML transactions to be

processed. This includes the number of requests to be processed, the first request

to be processed, and the current request being processed. The fourth field of the

dml info data structure, ddl files, is a pointer to a data structure which describes

the descriptor and template files. These files contain information about the 7

ABDL schema corresponding to the current network database being processed,

i.e., the ABDL schema information for a newly defined network database.

The next field of the structure, operation is a flag that indicates the

operation to be performed. This can be either the loading of a new database

27

L'.""- ",-" "" " ' "- "' ". -. '-.'- ,-- '- '-.'-.'.,i', ,, .', '%1'- i'- ,',,,. . ',).

struct dml info

struct curr db info curr db;
struct file info file;
struct tran info dml tran;
struct ddl info *ddl files;
int operation; -
int answer; 'Z
int error;
union kms info kms data;
union kfs info kfs data;
union kc info kc data;
struct cur table cur table;
int buff count;

Figure 12. The dml info Data Structure.

or the execution of a request against an existing database. The sixth field,

answer, is used by the LIL to record the answer received through its interaction

with the user of the interface. The remaining fields, kms data, kfs data, and

kc data are unions that contain information required by the KMS, KFS, and KC.

These are described in more detail in the next four chapters.The eleventh field

points to records that implement the currency information table (CIT), as

discussed by Meyer and MacDougal[Ref. 18]. The last field, buff count, is a

counter variable used in KC to keep track of the result buffers.

E. THE ORGANIZATION OF THE NEXT FOUR CHAPTERS

The following four chapters are meant to provide the user with a more

detailed analysis of the modules constituting the MLDS. Each chapter begins

with an overview of what each particular module does and how it relates to the

other modules. The actual processes performed by each module are then

discussed. This includes a description of the actual data structures used by the

modules. Each chapter concludes with a discussion of module shortcomings.

28

IVNK'I

-Z~~ ~ ~ W77 V7 V"

"- III. THE LANGUAGE INTERFACE LAYER (LIL)

LIL is the first module in the CODASYL-DML mapping process, and is

used to control the order in which the other modules are called. The LIL allows

the user to input transactions from either a file or the terminal. A transaction

may take the form of either a database description of a new database, or a

CODASYL-DML request against an existing database. A transaction may

contain 'multiple requests. This allows a group of requests that perform a single

task, such as a looping construct in CODASYL-DML, to be executed together as

a single transaction. The mapping process takes place when LIL sends a single

transaction to KMS. After the transaction has been received by KMS, KC is

called to process the transaction. Control always returns to LIL. where the user

may close the session by exiting to the operating system.

LIL is menu-driven. When the transactions are read from either a file or

the terminal, they are stored in a data structure called net reqinfo. If the

transactions are schema definitions, they are sent to the KMS in sequential order.

If the transactions are CODASYL-DML requests, the user is prompted by

another menu to selectively choose an individual request to be processed. The .5'.

menus provide an easy and efficient way for the user to view and select the

methods of request processing desired. Each menu is tied to its predecessor, so

that by exiting one menu the user is moved up the "menu tree". This allows the

user to perform multiple tasks in one session.

A. THE LIL DATA STRUCTURES L
LIL uses two data structures to store the user's transactions and control

which transaction is to be sent to the KMS. It is important to note that these

data structures are shared by both LIL and KMS.

The first data structure is named tran info and is shown in Figure 13. The

first field of this record, first req, contains the address of the first transaction

that has been read from a file or the terminal. The second field, curr req,

A contains the address of the transaction currently being processed. LIL sets this

29

struct tran info

struct net req info *first req;
struct net reqinfo *curr req;
int no req; Iv.*

Figure 13. The tran info Data Structure.

• - -"--

pointer to the transaction that the KMS is to process next, and then calls the

KMS. The third field, no req, contains the number of transactions currently in

the transaction list. This number is used for loop control when printing the k

transaction list to the screen, or when searching the list for a transaction to be

executed.

The second data structure used by LIL is named net req info. Each copy j iA4
of this data structure represents a user transaction, and thus, is an element of the

transaction list. The net reqinfo data structure is shown in Figure 14.

The first 'field of this record, req, is a character string that contains the actual

CODASYL-DML transaction. The second field, inreq, is a pointer to a list of

character arrays that each contain a single line of one transaction. After all lines

of a transaction have been read, the line list is concatenated to form the actual

transaction, req. The third field of this record, reqlen, contains the length of the
transaction. It is used to allocate the correct and minimal amount of memory

struct net reqinfo

char *req;
struct tempstr info *in req;

int req_en;
struct net req info *sub req;
struct net req info *next req;}

Figure 14. The net req_info Data Structure.

30

space for the transaction. If a transaction contains multiple requests, the fourth

field, sub req, points to the list of requests that make up the transaction. In this

case, the field in req is the first request of the transaction. The last field, F q
next req, is a pointer to the next transaction in the list of transactions.

* B. FUNCTIONS AND PROCEDURES
LIL makes use of a number of functions and procedures in order to create

the transaction list, pass elements of the list to the KMS, and maintain the

database schemas. We do not describe each of these functions and procedures in

detail. Rather, we provide a general description of the LIL processes.

1. Initialization

MLDS is designed to be able to accommodate multiple users, but is

implemented to support only a single user. To facilitate the transition from a

single-user system to a multiple-user system, each user possesses his own copy of

a user data structure when entering-the system. This user data structure stores

all of the relevant data that the user may need during their session. All four

modules of the language interface make use of this structure. The modules use

many temporary storage variables, both to perform their individual tasks, and to

maintain common data between modules. The transactions, in user data

language form, and mapped kernel data language form, are also stored in each

user data structure. It is easy to see that the user structure provides ,

consolidated, centralized control for each user of the system. When a user logs

onto the system, a user data structure is allocated and initialized. The user ID

becomes the distinguishing feature to locate and identify different users. The *
-' '

user data structures for all users are stored in a linked-list. When new users

enter the system, their user data structures are appended to the end of the list.

In our current environment there is only a single element on the user list. In a

future environment, when there are multiple users, we simply expand the user list

as described above.

2. Creating the Transaction List

There are two operations the user may perform. A user may define

a new database or process CODASYL-DML requests against an existing

" database. The first menu that is displayed prompts the user to select the

31..

" *$1~* '

operation desired. Each operation represents a separate procedure to handle

specific circumstances. The menu looks like the following:

Enter type of operation desired
(1) - load a new database A
(p) - process old database
(x) - return to the operating system

ACTION ---- >

For either choice (i.e., I or p), another menu is displayed to the user

requesting the mode of input. This input may always come from a data file. If

the operation selected from the previous menu had been "p", then the user may

also input transactions interactively from the terminal. The generic menu looks

like the following: .

Enter mode of input desired
(f) - read in a group of transactions from a file
(t) - read in transactions from the terminal
(x) - return to the previous menu

ACTION ---- >

Note that the "t" choice would be omitted if the operation selected from the

previous menu had been to load a new database. Again, each mode of input

selected corresponds to a different procedure to be performed. The transaction

list is created by reading from the file or terminal, looking for an end-of-

transaction marker or an end-of-file marker. These flags tell the system when one

transaction has ended, and when the next transaction begins. When the list is

being created, the pointers to access the list are initialized. These pointers,

first req and curr req, have been described earlier in the data structure

subsection. Both pointers are set to the first transaction read, in other words, the

head of the transaction list.

3. Accessing the Transaction List

Since the transaction list stores both schema definitions and

CODASYL-DML requests, two different access methods have to be employed to

send the two types of transactions to KMS. We discuss the two methods

32

s t °V'
.%%.-. '..'... - 82a-

-* % . -o.•. - *. o - . .. - v -x , =- - - " 1

separately. In both cases, KMS accesses a single transaction from the transaction

list. It does this by reading the transaction pointed to by the request pointer,

curr req, of the tran info data structure (see Figure 13). Therefore, it is the job

of the LIL to set this pointer to the appropriate transaction before calling KMS.

a. Sending schema definitions to KMS

When the user specifies the filename of a schema, (input
from a file only) further user intervention is not required. To produce a new

database, the transaction list of data definition statements is sent to KMS via a

program loop. This loop traverses the transaction list, calling KMS for each data

definition statement in the list.
L

b. Sending CODASYL-DML Requests to KMS Ki.

In this case, after the user has specified the mode of input,

the user conducts an interactive session with the system. First, all CODASYL-

DML requests are listed to the screen. As the requests are listed from the

transaction list, a number is assigned to each transaction in ascending order,

starting with the number one. The number appears on the screen to the left of

the first line of each transaction. Note that each transaction may contain

multiple requests. Next, an access menu is displayed which looks like the

following:

Pick the number or letter of the action desired
(num) - execute one of the preceding transactions
(d) - redisplay the list of transactions
(x) - return to the previous menu

ACTION ---- >

Since CODASYL-DML requests are independent items, the order in which they

are processed does not matter. The user has the option of executing any number

of CODASYL-DML requests. A loop causes the menu to be redisplayed after .

each CODASYL-DML request has been executed so that further choices may be

made.

4. Calling KC

When KMS has completed its mapping process, the each
Itransformed CODASTL-DML request have to be sent to KC to interface with the

33

Y V. . .T 7 .K7 1 - -

kernel database system. Then, KC must update the currency information table

(CIT) depending on the CODASYL-DML request. If, there are other

CODASYL-DML requests on the same transaction, KMS continues its mapping

process. Therefore, KC is immediately called, when its mapping process are

completed for each CODASYL-DML request.

5. Wrapping-up

Before exiting the system, the user data structure described in

Chapter II has to be deallocated. The memory occupied by the user data

structure is freed and returned to the operating system. Since all of the user

structures reside in a list, the exiting user's node has to be removed from the list.

'. A

a.O

34 '

A ~~
a.. *-"~, ~ %i.* d •4,.-.'

IV. THE KERNEL MAPPING SYSTEM (KMS)

KMS is the second module in the CODASYL-DML mapping interface and is

called from the language interface layer (LIL) when LIL receives CODASYL-

DML requests from the user. The function of KMS is to: (1) parse the request to

validate the user's CODASYL-DML syntax, and (2) translate, or map, the

request to equivalent ABDL request(s). Once an appropriate ABDL request, or

set of requests, has been formed, it is made available to the kernel controller

(KC) which then prepares the request for execution by MBDS. KC is discussed

in Chapter V.

A. AN OVERVIEW OF THE MAPPING PROCESS

From the description of KMS functions above we immediately see the

requirement for a parser as a part of KMS. This parser validates the

CODASYL-DML syntax of the input request. The parser grammar is the driving

force behind the entire mapping system.

1. The KMS Parser / Translator

KMS parser has been constructed by utilizing Yet-Another-Compiler

Compiler (YACC) [Ref. 15]. YACC is a program generator designed for

syntactic processing of token input streams. Given a specification of the input

language structure (a set of grammar rules), the user's code to be invoked when

such structures are recognized, and a low-level input routine, YACC generates a
program that syntactically recognizes the input language and allows invocation of

the user's code throughout the recognition process. The class of specifications

accepted is a very general one: LALR(1) grammars. It is important to note that

the user's code mentioned above is our mapping code that is going to perform the
r CODASYL/DML-to-ABDL translation. As the low-level input routine, we

utilize a Lexical Analyzer Generator (LEX) (Ref. 16]. LEX is a program

generator designed for lexical processing of character input streams. Given a

regular-expression description of the input strings, LEX generates a program that

35

* -.:.:..:,

i- f v ' - J . .

partitions the input stream into tokens and communicates these tokens to the

parser.

The parser produced by YACC consists of a finite-state automaton with

a stack. It performs a top-down parse, with left-to-right scan and one token look-

ahead. Control of the parser begins initially with the highest-level grammar rule.

Control descends through the grammar hierarchy, calling lower and lower-level

grammar rules which search for appropriate tokens in the input. As the

appropriate tokens are recognized, some portions of the mapping code may be

invoked directly. In other cases, these tokens are propagated back up the

grammar hierarchy until a higher-level rule has been satisfied, at which time

further translation is accomplished. When all of the necessary lower-level

grammar rules have been satisfied and control has ascended to the highest-level

rule, the parsing and translation processes are complete. In Section B, we give an

illustrative example of these processes.

2. The KMS Data Structures

KMS utilizes, different kinds of structures for different kinds of requests.

It, naturally, requires access to the CODASYL-DML input request structure

discussed in Chapter II, the dml tran structure.

CIT has been described in Chapter 2. This structure carries all of the

currency information for a particular run unit, and is vital to the proper

translation and execution of CODASYL statements. LIL of the interface should
initialize CIT. The KMS should have read access to CIT at all times, while any

updates of the CIT should be done by KC only.

The following data structures will be needed in KMS, and each is directly

associated with a particular CODASYL statement. The first field of the

net kms info structure, shown in Figure 15, is a pointer to the data structure

that contains duplication information accumulated by the KMS during the

grammar-driven parse. This data structure contains the name of an attribute that
has DUPLICATES NOT ALLOWED specified in the schema definition, and a

pointer to the next attribute with the same specification (see Figure 16). We use

this list when setting the nonduplicate flags in the attribute nodes.

36

. :. - ° :..:: .: . ¢ ' ,. ,. -- ' zH: ': : '.,,--,Y. , .: ,. ,£ .'INS'

struct net kms info

struct ndup node *ndup list;
struct move list *move list;
struct select list *select list;
struct connect list *connect list;
struct abdlreq *abdl;
struct erase abdl *erase;
struct find abdl *find;
struct store abdl *store;

struct getnode *get;

struct find abdl *cur find;

Figure 15. The net kms info Data Structure.

struct ndupnode

char name[ANLength + 1]:
struct ndup_node *next;

Figure 16. The ndup__node Data Structure.

The second field of the net kms info structure is a pointer to the head of

the move list structure (see Figure 17). The move list simulates the MOVE

statements used as assignment statements by the host language COBOL in other

CODASYL implementations. In our implementation, we create the move list

structure to keep track of these assignment statements, and to validate the

execution of other CODASYL-DML statements. The first field and second field
of the structure point to the record template structure (see Figure 17). This

structure keeps track of the name of the record type in the move statements. The

third field of the move list points to the data item structure (see Figure 17).

Each data item contains the attribute name, attribute type, and value

information corresponding to the item that is the object of the MOVE statement.

It should be noted that the value field in the data item record is a pointer to a

variable-length character string. Although attribute names have a constant

maximum-length constraint, the length of attribute values in the database is

37

limited only by the constraint placed on them by the user in the original ...-,

database definition, and as such, they may be of varying lengths.

The third field of the net kms info structure is a pointer to the

select list data structure (see Figure 18). This data structure contains attribute .,.

names to be used to retrieve records from the database. The fourth field of the

netkms info structure is a pointer to the connect list data structure (see Figure

19). This data structure contains set type names to be connected or disconnected.

struct move list

struct record template *first rec;
struct record-template *cur rec;
struct data item *cur item;

struct record template{ , .
char name[RNLength + 1];
struct record template *next record;
struct data item *item list;

struct data item

char name[ANLength + 1];
char *value;
char type;
struct data item *next item;

Figure 17. The Move list Data Structures.

struct select list .

char * itemname;
struct select list *next item;

Figure 18. The select list Data Structure.

38

.- 4 *. **-..*
€ .* 4 4 _.

struct connect list

char set type[SNLength + 1];
struct connect list next set type;'

Figure 19. The connect list Data Structure.

The fifth field of the netkms info structure is a pointer to the abdlreq

data structure (see Figure 20). The first field of this structure is a pointer to the

actual ABDL request generated by the KMS, for DISCONNECT, CONNECT

and MODIFY CODASYL-DML requests. The second field, operation, defines the

type of request to be executed. The last field is a pointer to other records of the

same type. -

The sixth field of the net kms info structure is a pointer to the

erase abdl data structure (see Figure 22). This structure contains information

about the ERASE CODASYL-DML request. The fist field of this data structure

defines the type of request to be executed (i.e.. ERASE ALL or ERASE specific

recordtype). The second and third fields are pointers to the actual ABDL

request generated by the KMS. The fourth field is a pointer to the

member erase data structure. We use this field when the CODASYL-DML

request is ERASE ALL. If the given record type is an owner of a nonempty set,

then we delete all of the members of the set owned by this record type (see

struct abdl req

char *abdl;
int operation;
struct abdl req *nextabdl;
} .

Figure 20. The abdl req Data Structure.

39 .t

Figure 21). The last field, resultfile, is used in KC to accumulate results

obtained from MBDS when executing the ABDL requests.

The seventh field of the net kms info structure is a pointer to the

find abdl data structure (see Figure 23). The' first field of this data structure,

set type, contains the set name of the translated request. The second field,

rec type, contains the record name of the translated request. The third field,

abdl, is a pointer to the actual ABDL request generated by KMS. The fourth

field, num_attr, contains the number of attributes in this particular record type

of the translated request. The fifth field, operation, defines the type of FIND

request to be executed (i.e., FIND ANY, etc.). The sixth field, dont update,

indicates that there is no need to update the CIT table for the request being

struct member erase

char set__name[SNlength + 1];
char *abdl;
char *delete;
char *template;
struct net file info *resultfile;
struct member erase *eraseall,

*next;

Figure 21. The member erase Data Structure.

struct erase abdl

int operation;
char *abdl;
char *retrieve; S

struct member erase *member;
struct net file info *resultfile;}

Figure 22. The erase abdl Data Structure.

40

''I-, ,_

struct symbolic info{
char name[ANLength + 1];
struct symbolic info *next;

struct suppres list

char set type[SNLength + 1];
struct suppres list *next;

struct set list

char set name[SNLength + 1];
char ownername[RNLength + 1];
char *dbkey;
struct set list *next;

struct find abdl

char settype[SNLength + 1];
char rectype[RNLength + I];
char *abdl;
int num attr;
int operation;
int dont._update;
struct set list *set list;
struct suppres list *suppres; ,.*
struct symbolic info *tgt list;
struct findabdl * next;
struct net file info *result file;

Figure 23. The find abdl Data Structures.

processed. The seventh field, set list, is a pointer to the set list data structure. _ .

This structure is a list of set names. We use this field, when we update CIT

table. The eighth field, suppres, is used by the KC to update the CIT table. The

ninth field, tgt list is a pointer to the symbolic info data structure. This

41

structure is a list of attribute names (the target list). The last field, result file is

used in KC to accumulate results obtained from MBDS when executing the

ABDL requests.

The eighth field of the net kms info structure is a pointer to the

store abdl data structure (see Figure 24). This structure contains information

about the STORE CODASYL-DML request. The first field, rec name, contains "

the record name of the translated request. The second field, ret_abdl is a pointer

to a RETRIEVE request. This request is generated by the KMS in order to

determine the existence of duplicate values for data items declared to have "'

DUPLICATES NOT ALLOWED in the database schema. The third field, ''

ins abdl, is a pointer to the INSERT request which will actually cause the record

to be placed into the database. The fourth field, templatel, is used as working

struct ret2 node

char set name[SNLength + 11;
char owner[RNLength + 1];
char select mode[SLength + 1];
char insertmode[INLength + 1];
char *abdl;

int flag;
struct net file info *result file;
struct ret2node *next;

struct store abdi

char recname[RNLength + 1];
char *retabdl;

char *insabdl;
char *template 1;
int dontupdate;
struct ret2 node *ret2 abdl;
struct suppres list *suppres;
struct net file info *resultfile;

%I

Figure 24. The store abdI Data Structures.

42

,,#e

*p%,,,,-

7.._

space by the KC. The fifth field, dont update, indicates that there is no need to

update the CIT table for the request being processed. The sixth field, ret2 abdl,

is a pointer to a RETRIEVE request which returns the owner database key value

of the proper set occurrence for the new record (see Figure 24). The first field of

the ret2_node structure, setname, contains the set name of the record to be

inserted. The second field, owner, contains the name of the set type of the record

to be inserted. The third field, select mode defines the set selection criteria for

the record being stored. The fourth field, insert mode defines the set insertion

mode for the record being stored. The fifth field, abdl, is a pointer to a

RETRIEVE request which returns the owner database key value of all the set

occurrences to which this new record belongs. The sixth field, flag, is used in KC

to build the INSERT request. If we do not insert the new record into a set type.

Then, we set this flag. The seventh field, resultfile, is used in the KC to

accumulate results obtained from MBDS when executing the ABDL requests. 2

The seventh field of the store abdl data structure, suppres, is used by KC to

update the CIT table. The last field, result file, is used in KC to accumulate

results obtained'from MBDS when executing the ABDL requests.

The ninth field of the net kms info structure is a pointer to the get node

data structure (see Figure 25). This structure contains information about the

GET CODASYL-DML request. The first field, type, contains the record name in

question. The second field, operation, identifies the type of GET format being

used (i.e., GET record type or GET item list IN record type). The third field,

struct getnode

char type[RNLength + 1];
int operation;
struct select list *tgt list;
struct getnode *next;

I_

Figure 25. The getnode Data Structure.

43

tgt list, is a pointer to the select list data structure. It includes a list of items to

be returned. If the format is GET recordtype, this field would be NULL, and

KC would return all attributes of the record. The same is true for the simple

GET format. The last field is a pointer to other records of the same type. Thus,

these records are connected in a linearly linked list.

The tenth field of the net kms info structure is a pointer to the last
FIND request. We use this field to display correct result buffer when the user

issue GET request.

B. FACILITIES PROVIDED BY THE IMPLEMENTATION

In this section, we discuss those CODASYL-DML facilities that are provided

in our implementation of the network (CODASYL) interface. We do not discuss

the CODASYL/DML-to-ABDL translation in detail. This subject is discussed by

Wortherly [Ref. 3]. Rather, we provide an overview of the salient features of

KMS, accompanied by one illustrative example of the parsing and translation

process. User-issued requests may take two forms, schema definition statements,

or CODASYL-DML database manipulations. Appendix B contains the design of

our implementation, written in a system specification language (SSL).

1. Database Definitions

When the user informs the LIL that the user wishes to create a new

database, the job of KMS is to build a schema that corresponds to the schema

definition statements input by the user. The LIL initially allocates a new

database identification node (netdbid node shown in Figure 5) with the name of

the new database, as input by the user. The LIL then sends the KMS a complete

schema definition, which has the form:

SCHEMA NAME IS database name; ,.
RECORD NAME IS record type;

DUPLICATES ARE NOT ALLOWED FOR attrname;
01 attr__ ; CHARACTER length.

attr 2; FIXED length.

RECORD NAME IS recordtype;

DUPLICATES ARE NOT ALLOWED FOR attrname, attrname;

44

4mam

attr I ; CHARACTER length.

SET NAME IS settype
OWNER IS record_type; -

MEMBER IS recordtype;
INSERTION IS insertionmode
RETENTION IS retention mode;
set selection mode;

SET NAME IS set type;

The sequence of statements in the schema definition is significant. First,

all record declarations have to appear, followed by all declarations for each record

statement, an additional record node (nrecnode shown in Figure 6) is added to

the database schema -under construction. For each subsequent attribute

statement, an additional attribute node (nattr node shown in Figure 9) is added

to the schema for the current record under construction. Then, for each set

statement, an additional set node (nsetnode shown in Figure 7) is added to the

database schema under construction. The database identification node

(netdbidnode shown in Figure 5) holds the number of records and the number 1A
of sets in the schema, the database name, and the initial value of dbkey. Each

,. .;.:

record node holds the number of attributes in that record, and the record name.

Each attribute node holds the attribute name, level number, length, type, and

non duplicate flag value. Each set node holds the set name, the owner's name,

." and the member's name, the insertion mode, the set selection mode, and the

*" retention mode.

When KMS has parsed all of the statements included in the schema

definition, the result is a completed database schema, as shown in Figure 26. Not

shown in Figure 26 is the list of attribute nodes that is connected to each record

node. The network (CODASYL) database schema, when completed, serves two

purposes. First, when creating a new database, it facilitates the construction of

the MBDS template and descriptor files. Secondly, when processing requests

against an existing database, it allows validitiy checks of the records, sets, and

attribute names used. It also serves as a source of information for type checking.

, .45

........

+. -- -- - -- -

* oO, .*,+-...-.-.+

I record type I record type ''+

set type j set type
- ------ + --

record ypet p
+- ------ +

Figure 26. The Network Database Schema.

2. Database Manipulations

When the user wishes the LIL to process requests against an existing

database, the task of KMS is to map the user's CODASYL-DML request to

equivalent ABDL requests.

a. The Mapping Processes: An Example

In this subsection we present an illustrative example of the KMS 'V

mapping process (i.e., parsing and translation) for a simple CODASYL-DML

FIND ANY call. We begin by showing the grammar for the dml portion of

KMS. We then step through the grammar and demonstrate appropriate portions
of our design in the system specification language (SSL). We only show those

portions of the design that are relevant to the example, i.e., those that would

actually be executed. The entire KMS design is shown in Appendix C.

The relevant grammar is shown in Figure 27. The source CODASYL-DML call

to be utilized for our example is the following:

MOVE Cleveland TO CITY IN SA
FIND ANY SA USING CITY IN SA

48

S.~~.- W- --..r 7k0

(Note: The MOVE statement is an assignment statement found in the host

COBOL language.) The ABDL request generated in response to such a

CODASYL-DML call is as follows:

[RETRIEVE ((TEMPLATE = SA) and (CITY = Cleveland)) ,...

(SNO, SNAME, STATUS, CITY, DBKEY) BY DBKEY J

To begin our discussion, let us first synchronize the reader. At the

beginning of the mapping process, the parse descends the grammar hierarchy

searching for appropriate tokens in the input that may satisfy one of the

grammar rules. Therefore, the parser descends through the ddlstatement rules

(schema definition statements). After finding no matching tokens for these rules,

the parser eventually descends to the dml rule (data manipulation language).

When the dml rule is first called, it immediately calls the --

dmlstatement rule, then starts to search for appropriate tokens in the input that

satisfy one of its sub rules. In our example, the move rule is called. For the sake

of brevity in the example, we will not go through the mapping process for the

MOVE statement. We need only be aware that the new value for the attribute

CITY in the record template for record type SA, has been set to the value

Cleveland, by the previous parse/translation. Now, we may proceed with the

mapping of the FIND ANY statement.

I When the find rule is called, the FIND token is recognized satisfying

the first portion of the rule. Control now goes to the record selection expr rule.

This rule then searches for tokens in the input that satisfy one of its sub rules. In

our example, the ANY recordtype portion of this rule is satisfied. The

record type rule recognizes the token, SA, via the terminal, IDENTIFIER. At

this point, we need to perform some translation. The following SSL is invoked

before the remaining portion of the rule is satisfied. V

° *

"77.

.................. * .-..~~~[-, ,-' .' ~~ .S ~ *

statement: ddl statement
dml

dml: dml statement
I dml dml statement

dmlstatement: setflag
move
get
find
store
connect
disconnect
erase
modify
perform loop
if then

find: FIND record selecti6nexpr curr suppression

record selection expr: ANY record type USING item list
IN recordtype

curr suppression: LSQUARE suppexpr RSQUARE

Iempty

item list: item name
item list COMMA item name

recordtype: IDENTIFIER

item name: IDENTIFIER

Figure 27. The KMS dmlstatement Grammar.

record selection expr: ANY record type

___ ___ * -

if ('recordtype' record template node is
not on move list)

perform error(l)
return

else
alloc and init new 'find' node

48 ,.

1=

...... . . .r. . .~.~ * -* * g* > y * %.' ~ % : - -..u..*......".. . *: ,. ::'' -. %'''. '¢ ;_-. " ;Y; : - -::

find type ANY in find node
copy record_type to find node
alloc and init new abdl str
alloc and init new tgt list
/* begin forming a RETRIEVE request */
copy "[RETRIEVE ((TEMPLATE 'recordtype')"

to abdl str
end if
select list NULL}

USING item list IN record type
I CURRENT record-type WITHIN set type

We first check to see if the record_type is on the move list. If it is not. the

system gives an error message and exits the parser. If it is on the move list, we

allocate and initialize a new find node. At the same time, we initialize an abdl

string to be used for forming the ABDL request. The target list is also allocated

and initialized at this point. Next, we copy "[RETRIEVE ((TEMPLATE =

'recordtype')" to the abdl str. Then, we free the select list. The select list

holds the attribute names from the item list rule.

The next token encountered is the U NG token. It matches USING

in the FIND ANY rule. So, the item list r Le below is called. This rule

recognizes the token, CITY, in the CODASYL-DML call and creates the

select list.

item list: item name{
put the first item name on select list

item list COMMA item name

put successive item names on select list
}

The IN token is recognized next and satisfied. Control is then passed

to the record_type rule. This rule recognizes the token, SA, and the parsing

process is complete. We must now perform more translation in order to complete

the record selection expr rule as indicated below.

49

*-."'.," "'." -,,, '~ ". . ." ' ' '" . ' ' " '. " " - . ,:°" " -. " r ",+" " " ',"e " -. - ', " '"

record selection expr: ANY record type

USING item list IN recordtype

if ('record type' is same as previous
'record type') P..

if (any data item on select list is not
defined for 'record type')
perform error(2)
return

end if
else
create tgt list item for all attributes

of 'record type' record
for (each data item on select list)

if ('data item' not on move list)
perform error(l)
return

end if
else

get 'item value' from move list
concat "and ('data item' =-'itemvalue')"

to abdl str
end- else

end for
concat ")('tgt list')" to abdl str
checkmember()
concat "DBKEY) BY DBKEY]" to abdl str
connect abdl str to find node

end else
end if
else
perform error(6)
return

end else}
r CURRENT record_type WITHIN settype

First, we check to see if the last recordtype is the same as the

previous record_type. If it is not, the system gives an error message and exits the

parser. If it is correct, we must check the select list for any attribute names that

50

are not defined for the record type. If undefined names are on the select list, the

system gives an error message and exits the parser. If there are no undefined

names we must create a tgt list for all of the attributes of the record type. Then.

we must check each attribute name on the select list for inclusion on the

move list, because we need the value of the attribute in order to issue the

RETRIEVE request. If the attribute is not on the move list, the system gives an

error message and exit the parser. If the attribute is on the move list, we must

concatenate each attribute name on the select list, and it's value from the

move list to the abdl str. Next, we concatenate ")('tgt list') " to the abdl str.

(Note: We created the tgt list earlier, thus, we simply concatenate that list to

the abdl str.) Next, we check to determine if the record in question is a member

of any set. If the record does belong to one or more sets, we concatenate the

MEMset type attribute for those sets to the target list of the abdl str being

processed. We use the MEMset type values to update the CIT table properly.

Next, we concatenate "DBKEY) BY-DBKEY]" to the abdlstr.

Now, the record selection expr rule is completed, and control returns

to the curr suppression rule. The empty portion of the curr suppression rule is

matched, satisfying the curr suppression rule. Now, the dm1statement and dml

rules are fully satisfied, and control returns to the start statement. The parsing

and translation process for our example is now completed and the find node is

passed to the KC for execution.

51

CC.. *. C~~ ~ -#C '~d ' .'

,. -

V. THE KERNEL CONTROLLER

The Kernel Controller (KC) is the third module in the MLDS CODASYL

language interface. It is called by the language interface layer (LIL) when a new

database is being loaded, and is called by the kernel mapping system (KMS)

when an existing database is being manipulated. KC is the module which

performs the task of controlling the submission of ABDL transactions to the

multi-backend database system (MBDS) for processing.

KC must perform the following functions: (1) submit transactions to the

MBDS, (2) receive and store results of transactions, (3) update the currency

information table, and (4) cause the proper data to be returned to the user.

The procedures that make up the interface to the KDS (i.e., MBDS) are

contained in the test interface (TI) of MBDS. To fully integrate the KC with the

KDS, the KC calls procedures which are defined in the TI. Due to upcoming

hardware changes in MBDS, we decided not to test the KC on-line with the TI.

Our solution to this problem has been to design the system exactly as if it were
interfacing with the TI. However, for each call to a TI procedure, we have

created a software stub that performs the same functions as the actual TI
procedure. The reader should realize that all interactions with the TI procedures

described in the KC are actually made with these software stubs, rather than

with the on-line TI procedures.

In this chapter we discuss the processes performed by the KC. This

discussion is in two parts. First, we examine the data structures relevant to the ' -_

KC, followed by an examination of the functions and procedures found in the

KC. Appendix C contains the design of our KC implementation, written in a

system specification language (SSL). "

A. THE KC DATA STRUCTURES '-

In this section, we review some of the data structures discussed in Chapter II, ,.

focusing on those structures that are accessed and used by KC. One data

structure used by KC is the dml info record shown in Figure 28. KC makes use

52

%'::'.-:,

of only four fields in this record. The first field, operation, defines what action is

going to be taken by KC.

The second field, buff count, is an integer used to maintain control of the file

buffers associated with the results of each RETRIEVE request.

The third field, kms_data, is a pointer to the kms info union data structure.

This structure points to the net kms info data structure, which allows us to

execute proper ABDL request(s).

The fourth field, cur table, is a pointer to the cur table data structure (see

Figure 29), which contains currency information for the database in use. The

first field of the cur table data structure points to the run unit data structure.

This data structure contains information about the current of rununit. The term

"rununit" means the most recently accessed record of any type whatsoever. The

first field of the run unit data structure, holds the name of the current record of

the run unit. The second field, dbkey, holds the database key value of the

current record of the run unit. We do not use any information relating to the

current record of the record type in our KMS implementation. Thus, we do not

struct dml info

struct curr db info curr db; ,'-,

struct file info file;

struct tran info dml tran;
struct ddl info *ddifiles;
int operation;
int answer;
int error;
int buff count; L..
union kms info kms data;
union kfs info kfsdata;
union kc info kc data;
struct cur table *cur table;

Figure 28. The dml info Data Structure.

..
P

531-- - (* .. *. - . **. *.- **.- y

-... '- - .-- ,T ,--..-

struct run unit

char rec type[RNLength + 11;
int dbkiey;

struct cur set

char setname[SNLength + 11; I
char type[RNLength + 1];
int dbkey;

char member[RNLength + 1];
char owner[RNLength + 1]; ..-.- '

int owner _dbkey;
struct cur set *next set;

struct cur table

struct run unit *run;
struct cur set *settype;
struct cur set *cur set;

Figure 29. The cur table Data Structure.

- include the current of record type in our implementation of the currency

. information table. The second and third fields of the cur table data structure,

* point to the cur set data structure. This data structure contains information

about the current of set type. The first field of this data structure contains the

name of the set type. Note that sometimes the current of set type is going to be "..

" an owner, and sometimes it is going to be a member. The second field of the

". cur set data structure contains this information. The third field, dbkey, holds the -

database key value of the current of set type. The fourth and fifth fields hold the

name of the member and owner record types of the set type. The sixth field,

owner dbkey, holds the database key value of the owner record of the set type.

We create the cur set data structures dynamically. If the set type being

. processed is not on the currency table, then we create a new cur set data

54

% l

structure to hold information about this set type. The last field of the cur set

data structure is a pointer to other data structures of the same type that connect

the data structures in a linearlylinked list. _.

The net file info is used by KC to store information about the file buffers

containing the results obtained for each RETRIEVE request (see Figure 30). '.% .,.

The first field, buff, contains the file name and file id. This information is

required so that the appropriate files may be written to and read from, as

necessary. The second field, count, is simply an integer representing the number

of results in the file buffer. The next field, buff loc, indicates the KC's location in

the file buffer. For instance, after the first value is pulled from a file buffer, this

field indicates that the KC's position is now at the beginning of the second result.

The fourth field, status, serves as a flag so that a file buffer is opened under the

correct status. The fifth field, max-chars, defines the maximum length of

response in the result buffer. The sixth field is a pointer to a character string

that holds the last result value pulled from the file buffer. This value may be

used in the building of subsequent requests, or it may be used to update the CIT

struct file info

char fname[FNLength + 1];
FILE *fid;

struct net file info

struct file info buff;
int count;
int buff loc;
int status;
int max chars;
char *curr buffval;
char *temstr;}

Figure 30. The net file info Data Structure.

55

L .-r - -r-'r- rr rr ~rgr..>-r.-*--, .*%,

table. The last field is a pointer to a character string that holds the response

*. record. This field is used by KFS to display the result to the user.

B. FUNCTIONS AND PROCEDURES

The KC makes use of a number of different functions and procedures to

manage the transmission of the translated CODASYL-DML requests (i.e., ABDL

requests) to the KDS. Not all of these functions and procedures are discussed in . "

detail. Instead, we provide the reader with an overview of how the KC controls

the submission of the ABDL requests to MBDS.

1. The Kernel Controller

The kernel controller procedure is called by LIL when a new database is

being loaded, and is called by KMS when an existing database is being

manipulated. This procedure provides the master control over all other

procedures used in KC. This procedure is a case statement that calls different

procedures based upon the type of ABDL transactions being processed. If a new

database is being created, the load tables procedure is called. If the transaction

is of any other type, then the appropriate procedure for processing that

transaction is called. If the transaction is none of the above, there is an error, and

an error message is generated with control returned to LIL. r7,
2. Creating a New Database

The creation of a new database is the least difficult transaction that the

KC handles. The load tables procedure is called, which performs two functions.

First, the test interface (TI) dbl template procedure is called. This procedure is!.7

used to load the database-template file created by the KMS. Next, the TI

dbl dir tbls procedure is called. This procedure loads the database-descriptor

file. These two files represent the attribute-based metadata that is loaded into

the KDS, i.e., MBDS. After execution of these two procedures, control returns to

the LIL.

3. The FIND Requests

The find requestshandler procedure is called by the KernelController

procedure to handle FIND requests. The find requests handler procedure is a

large case statement. The find requests_ handler procedure takes action

depending on the FIND request being processed. If the FIND request is either

my

d

.1i

- - .- ' -'.~---" .',-.

the FIND ANY, FIND FIRST, FIND LAST, FIND WITHIN or FIND OWNER,

find requests handler takes the same action. It executes the RETRIEVE request

associated with the statement, and calls the Find update procedure. If the FIND

request is either a FIND NEXT, FIND PRIOR or FIND DUPLICATE, the

find requestshandler procedure must first find the correct find abdl data -.

structure and determine the correct buffer location in the result file of this data

structure. The procedure then calls the* Find update procedure. If the FIND

request is a FIND CURRENT, then findrequests _handler simply calls the

Findupdate procedure.

The Findupdate procedure is called by the find requests handler, if the

user does not use SUPPRESS UPDATE mode. The main goal of this procedure is

to set up currency information depending on the type of find request.

The following examples illustrate the logic used in this procedure.

Suppose the following CODASYL-DML request is issued by the user:

MOVE SS5 TO SNO IN SP *.. -.
FIND ANY SP USING SNO IN SP

KMS translates this request into the following ABDL RETRIEVE request:

RETRIEVE ((TEMPLATE = SP) and (SNO = SS5).(SNO, PNO, QTY, MEMSSP, MEMPSP, DBKEY) BY DBKEY]

The KernelController procedure is then called by KMS to execute this request

and update the CIT table. The Kernel Controller procedure thhen calls the

find requests handler procedure. This procedure provides the master control over

all FIND requests. In our example, case AnyFin statement is satisfiyied. Since

the RETRIEVE request is complete, it may be immediately forwarded to KDS

for execution. This is accomplished by calling dmlexecute. This procedure uses

two TI procedures and the dmlcheck requests left procedure. In general,

dmlexecute sends the ABDL request to KDS and waits for the last response to

be returned. Results for a given request are placed in a unique file buffer

associated with each request data structure. The file results procedure controls

this process.

57
"p51

After the last response is returned, the Find update procedure takes

control. The action taken is dependent upon the particular case satisfied in the

procedure. In our example, case AnyFin statement is satisfied. The SP

recordtype is a member of both SSP and PSP set types. If the user does not

specify any currency suppression, we update the currency of all set types to

which this record type belongs, and the currency of the run unit. If the set types

are not on the CIT table, we create new cur set data structures to hold the

necessary information, if the user specifies set types for currency suppression, we

only update the currency of these particular set types and the currency of the

rununit. If the user specifies SUPPRESS UPDATE, then we do not update the .,-

CIT table.

Finally, control returns to KMS via the Kernel Controller procedure and

the find requests handler procedure. If there is another request in the same

transaction, KMS continues the mapping process. If not, control returns to LIL,

and we can pick another transaction, or return to any of the other MENUs in

LIL.

4. The Modify, Connect, and Disconnect Requests

If the request is Modify, Connect, or Disconnect, the request handler

procedure is called by the Kernel Controller procedure. The first thing done by

the request handler procedure is to execute all ABDL UPDATE requests created

by KMS. If the request is Connect or Disconnect, the requesthandler procedure

takes appropriate action to update the CIT table. We use the connectlist data

structure (see Figure 19) to update set type(s) correctly.

5. The Move Request U'.

There is no action taken by the Kernel Controller procedure for the

Move Request. We mentioned before in KMS, the Move request is just an ,....

assignment statement.

6. The Store Request

If the request is the Store Request, the store requests handler procedure . ,.

is called by the Kernel Controller. The following examples illustrate the logic

used in this procedure to control the processing of this type of request. Suppose 1
the following CODASYL-DML requests are issued by the user:

58 NI~
% ',_~b •

"e3

I

MOVE SS4 TO PNO IN PA
MOVE PP2 TO SNO IN SA
MOVE PP1 TO SNO IN SP
MOVE PP3 TO PNO IN SP

A

MOVE 100 TO QTY IN SP
STORE SP

KMS translates these CODASYL-DML requests into the following three ABDL -4

RETRIEVE requests and one ABDL INSERT request:

[RETRIEVE (((TEMPLATE SP) and (SNO PP1)) or
((TEMPLATE = SP) and (PNO - SS3)))
(DBKEY) BY DBKEY]

RETRIEVE ((TEMPLATE = SA) and (SNO = PP2))(DBKEY)]

RETRIEVE ((TEMPLATE = PA) and (PNO = SS4))(DBKEY)] .. '

INSERT (<TEMPLATE,SP>,<DBKEY,***>,
<SNO,PPI>,<PNO,SS3> ,<QTY,100>, j
<MEMSSP,***>,<MEMPSP,***>)

The first task performed by the store requests handler procedure is to execute *41*

the first RETRIEVE request attached to the store abdl data structure. This

request determines if there are records in the database which have attribute

values that are not to be duplicate. The execution of this RETRIEVE is .4-4

accomplished by calling dml execute. If the request buffer created for this

RETRIEVE is non empty at the end of execution, there is an error. If the

request buffer is empty, then we continue the execution in the following manner.

To insert the new record into the correct set occurrences, we need to

know the database keys of the owners of the set occurrences. For this reason, we

issue the next two RETRIEVE request(s) above. These requests are created by

KMS depending on the set selection criteria and the set insertion mode of the -

new record. These RETRIEVE requests are executed by the dmlexecute

procedure, and the results are placed in a unique file buffer associated with each

request data structure. Then, the build request is called to complete the INSERT

50 $

request. The database keys of the owners of the set occurrences are pulled from

the appropriate result buffer(s) and substituted for the placeholding asteriks to

complete the INSERT request. In our implementation, the order of the

RETRIEVE requests, and the order of the attributes, MEMset_type are the

same. Thus, we can easily complete the INSERT request. After this operation,

the INSERT request is issued by calling dm1execute. Now, if no currency

suppression list is attached to the store abdl data structure, the CIT table is

updated to reflect a change in the SSP and PSP currency, as well as, the current

of run unit. Finally, control returns to KMS via the Kernel Controller

procedure.

7. The Erase Request

The ERASE request is handled by the erase requestshandler. This

procedure first checks the type of the erase request (i.e., ERASE ALL

recordtype or ERASE record type). If the type of the erase request is ERASE

recordtype, then this procedure -proceeds in the following manner. The

RETRIEVE request attached to the erase abdl data structure is executed by

calling dml execute. This request determines, whether or not the record being

deleted is an owner of a non empty set. If the request buffer is empty, then all

that remains is to issue the DELETE request attached to the erase abdl data

structure. This request deletes the current record of the rununit. After the

deletion, erase requests handler update the CIT table by setting the current of

run unit indicator to NULL. If the result buffer of the first RETRIEVE request

is not empty, the system gives an error message and the erase request fails.

If the type of the erase request is ERASE ALL record_type. We have a

different sequence of events. ERASE ALL deletes the current of run unit whether

or not it is the owner in a nonempty set. Indeed, if it is the owner in a ,

nonempty set, this option really comes into its own. All the members connected ,.'-.

to the set are also erased. If any of these members happens to be connnected to

some other set of another type, this does not matter. Furthermore, if any of these -'

members happens to be themselves an owner in a non empty set, then their

members in turn are erased. To deal with this problem, the "

erase requests handler procedure calls the erase member procedure recursively.

60

.. * .9
~~'.::-,.

We first issue the RETRIEVE request to get the database key values of the

members of the set. Then, we complete the DELETE request attached to the

ret2 node data structure, and issue each DELETE request to KDS via the

dml execute procedure. After this process, the erase requests handler executes

the DELETE request attached to the eraseabdl data structure to delete the .:. -

current of the rununit. Once again, the CIT table is updated to reflect any

changes in currency i.e., current of set types become NULL as appropriate, as

well as, the current of run unit.

8. The Get Request7

The GET request is handled by the dmlkfs procedure. This procedure

uses the result buffer of the last FIND request issued. It simply looks at the

operation field of the get node data structure, and retrieves either the entire

record or specific fields of the record from the result buffer, and displays these

results to the user. We will examine this process more closely in the next chapter

(The Kernel Formatting System). -

, S

I.,

5 .

i*

61

VI. THE KERNEL FORMATTING SYSTEM (KFS)

KFS is the fourth module in the CODASYL-DML language interface, and

is called by the Kernel Controller (KC) when it is necessary to display results to

the user. The transformation of data into the appropriate format is a very simple

task for the CODASYL-DML language interface. Unlike most other language -

interfaces, no change in format is required. The form that the data is in when it

is retrieved from MBDS is the same form in which it is to be displayed to the

user. The task of KFS is reduced to simply printing out the results obtained

from the ABDL equivalents of the CODASYL-DML requests. But, there is one

exception, we do not display the database key values to the user in the result

buffer. In this chapter, we discuss how KC stores the data that the KFS "

eventually displays, and how the KFS outputs this data.

A. THE KFS DATA STRUCTURE

KFS utilizes just one of the data structures defined in the language

interface. The kfs net info record, shown in Figure 31, contains information

needed by KFS to process the results. The first field in this record, response, ON1

contains the result from MBDS which is loaded by KC just prior to calling the

KFS. The second field, curr_pos, lets KFS know vhere it is in the response

buffer. This assists KFS in maintaining the correct orientation in the response

buffer. The last field, res len, indicates the length of the response buffer. This

value is used as a halting condition.

struct kfs net info

char *response;
int currpos;
int res len; - "

Figure 31. The kfs net info Data Structure.

63
4--.

.0 .

B. THE FILING OF CODASYL-DML RESULTS

KC stores the results obtained from a CODASYL-DML request by calling

the file results procedure. This procedure first opens the result file for writing in

the response. The procedure reads in the name of the first attribute and stores it

in a variable, in addition to storing it in the results file. The attribute value is

then stored in the results file. A while loop then handles the storing of the

remaining attribute-value pairs into the results file. Before an attribute name is

stored into the results file, a check is made to determine if this attribute matches

the attribute name of the first attribute in the result. If the attribute names

match, we have completed storage of one result and are ready to store the next

result. An end-of-line marker is inserted in the results file at this point before the

next attribute-value pair is stored. Otherwise, the attribute-value pair is stored

without the end-of-line marker. This check is one of the reasons that the KFS

task of formatting output is so easy for the CODASYL-DML language interface.

C. THE KFS PROCESS

The KFS module is contained in the small procedure, dml kfs. KFS is

only called by KC when the results of a request are to be displayed to the user.

The get request causes this action to be taken. The only task that the KFS

performs is to display to the screen the attribute-value pair found on the current

line in the result buffer of the last FIND request. A loop prints out this line, a

character at a time, depending of the type of the get request (i.e., GET or GET

item list IN recordtype). This means KFS retrieves either the entire record or

specific fields of the record from the result buffer.

~JN

63

*-°. -.

VII. CONCLUSION

In this thesis, we have presented the implementation of a CODASYL-

DML language interface. This is one of four language interfaces that the multi-

lingual database system supports. In other words, the multi-lingual database

system is able to execute transactions written in four well-known and important

data languages, namely, DL/I, SQL, CODASYL-DML, and Daplex. In our case,

CODASYL-DML transactions are executed by way of LIL, KMS, KC and KFS.

The work accomplished in this thesis is part of an ongoing research effort being

conducted at the Laboratory for Database Systems Research, Naval Postgraduate

School, Monterey, California.

The need to provide an alternative to the development of separate stand-

alone database systems for specific -data models and languages has been the

motivation for this research. In this regard, we have shown how a software

CODASYL-DML language interface may be constructed without the need of a

stand-alone CODASYL database management system. We have extended the

work of Wortherly [Ref. 3] by implementing the algorithms he presents for the

CODASYL-DML language interface. Additionally, we have provided a general

organizational description of the MLDS.

A major design goal has been to design a CODASYL-DML language

interface to MBDS without requiring changes to be made to MBDS or ABDL. p.':..

We have achieved this goal. All CODASYL-DML transactions are performed in

the CODASYL-DML interface. MBDS continues to receive and process

transactions written in the unaltered syntax of ABDL. Additionally, our

implementation does not require any changes to the syntax of CODASYL-DML.

Two facilities suggested by Wortherly [Ref. 3] that are not included in our

implementation are the looping facility, PERFORM-LOOP, and the IF-THEN

statement. These are not included, due to the lack of time to implement them.

Therefore, we chose to concentrate our implementation on the native

CODASYL-DML statements first. If more time will become available, we can

64

VN
i * N~. ,

.. J r j . '..~ W77 * " 7t ° -

implement the these facilities, since there is not logical difficulty in implementing

them. Our level-by-level topdown approach to designing the interface has been

a fine choice as well. This approach permits follow-on programmers to easily

maintain and modify the code. ,.

Once all four interfaces have been completely implemented, MLDS should

be tested as a complete system for the projected efficiency, effectiveness, and "

responsiveness to user needs. It is anticipated that this research and

development effort will ultimately result in a new era for database management

that will allow for increased productivity in database maiiagement.

', .6 .'

ft m. • .

,.° •. * o

66 -p. \%

N°%

-' -' '

-:-9 .ftf ';. N

APPENDIX A - THE LIL PROGRAM SPECIFICATIONS

module CODASYL/DML-INTERFACE

db-list : list; /* list of existing relational schemas

head-db-list-ptr: ptr; /* ptr to head of the relational schema list % .
current-ptr: ptr; /* ptr to the current db schema in the list */
follow-ptr: ptr; /* ptr to the previous db schema in the list */
db-id : string; /* string that identifies current db in use */

proc LANGt T AGE-INTERFACE-LAYERO;
/* This proc allows the user to interface with the system. */
/* Input and output: user CODASYL-DML requests */ 4

stop : int; /* boolean flag */
answer: char; /* user answers to terminal prompts */

perform DML-INITO;
stop = 'false';
while (not stop) do I

allow user choice of several processing operations */
print ("Enter type of operation desired"); Vol.
print (" (1) - load new database";);
print (p) - process existing database");
print (" (x) - return to the to operating system");
read (answer);
case (answer) of

'1': /* user desires to load a new database */ _
perform LOAD-NEWO;

'p': 1* user desires to process an existing database */
perform INITIALIZECURTABLEO;
perform PROCESS-OLDO;

'x': /* user desires to exit to the operating system */
/* database list must be saved back to a file */
store-free-db-list (head-db-list, db-list);
stop = 'true';
exito;

default:/* user did not select a valid choice from the menu*/
print ("Error - invalid operation selected");
print ("Please pick again")'

end-case;
/* return to main menu */

end-while;
end-proc;

68

L •

proc DML-INITO;

end-proc;

E" proc LOAD-NEWO;
/- This proc accomplishes the following: *1
/* (1) determines if the new database name already exists,
/* (2) adds a new header node to the list of schemas, *1
/* (3) determines the user input mode (file/terminal),
/* (4) reads the user input and forwards it to the parser, and */
/* (5) calls the routine that builds the template/descriptor files */

answer: int; /* user answer to terminal prompts */
more-input: int; /* boolean flag */
proceed: int; /* boolean flag */
stop : int; /* boolean flag */
db-list-ptr: ptr; /* pointer to the current database */
req-str: str; /* single create in DML form */
ptr-abdl-list: ptr; /* ptr to a list of ABDL queries (nil for this proc)*/
tfid, dfid: ptr; /* pointers to the template and descriptor files */

/* prompt user for name of new database */

print ("Enter name of database");
readstr (db-id);
db-list-ptr = head-db-list-ptr;
stop = 'false';
while (not stop) do

/* determine if new database name already exists */
/* by traversing list of network db schemas */
if (db-list-ptr.db-id = existing db) then

print ("Error- db name already exists"); .,.
print ("Please reenter db name");
readstr (db-id);
db-list-ptr = head-db-list-ptr;

end-if;
else .4

if (db-list-ptr + 1 = 'nil') then
stop = 'true';

else
/* increment to next database */
db-list-ptr = db-list-ptr + 1;

end-else;
0 end-while;

.. ,. 67

/* continue - user input a valid 'new' database name
/* add new header node to the list of schemas and fill-in db name
/* append new header node to db-list *"
create-new-db(db-id);

/* the KMS takes the DML defines and builds a new list of relations */
/* for the new database. After all of the defines have been processed *"
/* the template and descriptor files are constructed by traversing *'
/* the new database definition (schema). */ -

more-input = 'true';
while (more-input) do

/* determine user's mode of input *-
print ("Enter mode of input desired");
print (" (f) - read in a group of defines from a file");
print (" (x) - return to the main menu");
read (answer);

case (answer) of
'f': /* user input is from a file */

perform READ-TRANSACTION-FILE();
perform DBD-TO-KMSO;
perform FREE-REQUESTSO;
perform BUILD-DDL-FILES();
perform KERNEL-CONTROLLERO;

'x': /* exit back to LIL */
more-input = 'false';

default: /* user did not select a valid choice from the menu
print ("Error - invalid input mode selected");
print ("Please pick again");

end-case;
end-while;

end proc;

i o..

_.V 4.. . IC R7' .7 TV~ ~ r r w r r . -

proc PROCESS-OLDO;
/* This proc accomplishes the following: */
/* (1) determines if the database name already exists, -
/* (2) determines the user input mode (file/terminal), */
/* (3) reads the user input and forwards it to the parser */

answer: int; 1* user answer to terminal prompts *1
found: int; /* boolean flag to determine if db name is found */
more-input: int; /* boolean flag to return user to LIL */
proceed:int; /* boolean flag to return user to mode menu */
db-list-ptr: ptr; /* pointer to the current database *"
req-str: str; single query in DML form */
ptr-abdl-list: ptr; /* pointer to a list of queries in ABDL form */
tfid, dfid: ptr; /* pointers to the template and descriptor files */ -

/* prompt user for name of existing database */
print ("Enter name of database");
readstr (db-id);
db-list-ptr = head-db-list-ptr;

found = 'false';
while (not found) do
/* determine if database name does exist */
/* by traversing list of network schemas */
if (db-id = existing db) then

found = 'true'; -
end-if;
else

db-list-ptr = db-list-ptr + 1;
/* error condition causes end of list('nil') to be reached */
if (db-list-ptr = 'nil') then ,.. ,

print ("Error - db name does not exist");
print ("Please reenter valid db name");
readstr (db-id);
db-list-ptr - head-db-list-ptr; '..

end-if; '

end-else;

end-while;

%°

69
p,

77 :-~YW' ~i ' ., ''' I * • -rT .- '- r r-

- ..

/* continue - user input a valid existing database name
/* determine user's mode of input */

more-input = 'true';
while (more-input) do

print ("Enter mode of input desired");
." print (" (f)- read in a group of DML requests from a file");

print (" (t) - read in a single DML request from the terminal");
print (" (x) - return to the previous menu");
read (answer);

case (answer) of
'f': /* user input is from a file */

perform READ-TRANSACTION-FILEO; -

perform DMLREQS-TO-KMSo;
perform FREE-REQUESTSO;

't': /* user input is from the terminal */
perform READ-TERMINALO;
perform DMLREQS-TO-KMSO;
perform FREE-REQUESTSO;

'x': /* user wishes to return to LIL menu
more-input = 'false';

default: /* user did not select a valid choice from the menu *"
print ("Error - invalid input mode selected");
print ("Please pick again");

end-case;

end-while;

end-proc;

proc READ-TRANSACTION-FILEO;
/* This routine opens a dbd/request file and reads the transactions */
/* into the transaction list. If open file fails, loop until valid */
/* file entered

while (not open file) do
print ("Filename does not exist");
print ("Please reenter a valid filename");
readstr (file);

end-while;

70

.* .-. ...

'--S. .- -v'.c,'r. m .'' =-'-s --- -.-- . ,* v.:-r- -L-.
.

-
- -

-- --- -- ---..-.................-..................... ' h w r -L~r.-

proc READ-FILEO;
/* This routine reads transactions from either a file or the */.

/* terminal into the user's request list structure so that */
/* each request may be sent to the KERNEL-MAPPING-SYSTEM. */

end-proc;

proc READ-TERMINALO;
/* This routine substitutes the STDIN filename for the read */
/* command so that input may be intercepted from the terminal */

end-proc;

proc INITIALIZE-CUR-TABLE0;
/* This proc initialize the CIT table before starting */".. . --

/* to execute CODASYL-DML request(s).

end-proc;

proc DBD-TO-KMSO;
/* This routine sends the request list of database descriptions */

1* one by one to the KERNAL-MAPPING-SYSTEM *1

while (more-dbds) do
KERNAL-MAPPING-SYSTEMo;

end-while;

end-proc;

71

k . .

proc DMLREQS-TO-KMSo;
/* This routine causes the DML requests to be listed to the screen.
/* The selection menu is then displayed allowing any of the
/* DML requests to be executed. */

perform LIST-DMLREQSO;
proceed - 'true';
while (proceed) do

print ("Pick the number or letter of the action desired");
print (" (num) - execute one of the preceding DML requests");
print (" (d) - redisplay the file of DML requests");
print (" (x) - return to the previous menu");
read (answer);

case (answer) of
'num' : /* execute one of the requests */

traverse query list to correct query;
perform KERNAL-MAPPING-SYSTEMO;

'd /* redisplay requests */
perform LIST-DMLREQSO;

'x' :/* exit to mode menu
proceed = 'false'; ["'

default :/* user did not select a valid choice from the menu
print (" Error - invalid option selected");
print (" Please pick again");

end-case;

end-while;

end-proc;

".

APPENDIX B - THE KMS PROGRAM SPECIFICATIONS

/ * Currency Indicator Table

/* References made in the following specification to CIT refer
1* to the Currency Indicator Table. This table consists of struc-
/* tures that hold information identifying the current record of
/* recordtype, set type, and run unit (run unit is the applica-
/* tion program being run). The following is the proposed struc-
1* ture for this table [Ref. 13].

struct CIT

1* struct RUN UNIT *run;
/* struct rec type node *next rectype;

/* struct settype node *next settype;1* } . .:
1,
/ 1* struct RUN UNIT

char rectype[];
int dbkey;

/ * } ..

/ * For each record type in schema:
struct rec type node

1* 1 ~ '%.* -

char type[1;
int dbkey;

1* struct rectypenode *nextrectype;/* }

/,
/* For each set type in schema:
/ struct set typenode/* {
/* boolean OWNER;

char TYPE[];
int dbkey;
char member[1;
char owner[];

/ * int ownerdbkey;
/* struct settypenode *next set type;

boolean: firstmove = TRUE /* flag for MOVE operation */
boolean: first time /* general purpose flag */
boolean: sys_flag value /* boolean value of system flags */

73

ptr: currtemprec /* ptr to last record added to move list *.
ptr: curr temp item /* ptr to next item node to be added to

record template node of movelist */
list: suppression list /* list of record types and/or set types */

for which currency updates are suppressed */

list: select list /* list of data items used for record section */
list: connect list /* list of sets to which current of run

unit is to be connected or disconnected */
list: tgt list /* list of attribute names to be accessed */ :
list: move list /* list of record templates used with

MOVE statement *1
list: curr non dup list /* list of data items for which duplicates

are not allowed in current recordtype */
int: level number /* level of data item in record types *.
char: member type /* string variable to hold a name

start statement

statement: ddlstatement
dml

dml: dml statement
dml dml statement

ddl statement: schema defn record list set list

schema defn: SCHEMA NAME IS schema name SEMI COLON

locate db id schema header node
if (db names do not match)

print ("Error-given db name doesn't
match name in file")

perform yyerror 0)
return

end if
initialize db key starting value is 1 */}

record list: record desc

{
set db id node ndn first rec ptr

74
,.p. VL

record list record desc

connect successive record nodes

record desc: record data item list

curr non dup list NULL

record: RECORD NAME IS

allocate and mnit a new
record node (NRECNODE) "

allocate curr non dup-list .-

db id node n-dnnum rec++

record spec

record spec: record_type ~

if (record_type not defined yet)
copy record_type to current

record node (NRECNODE)
make this the current record node

end if
else

print ("Error-'record-type' record

doubly defined")

return
end else

SEMICOLON duplicates list

set list: empty
Iset desc

set db id node ndn first set ptr

set list set desc

75

d- 4 4~4

connect successive set node(s)

set desc: set desig owner spec member spec

set desig: SET NAME IS

allocate and init a new set node (NSET NODE)

db id node ndn num set++

set type

if (set type not yet defined)
copy settype to current set node (nsn name)

establish currsetptr
end if
else

print ("Error-'set type' set doubly defined in db")
perform yyerroro

end else

SEMI COLON

owner spec: OWNER IS aa SEMICOLON

aa: record type

if (record_type not defined)
print ("Error-'recordtype' record does not exist")

perform yyerroro
return

end if
else-

copy recordtype to current set node (nsn owner name)

locate recordtype node
nsnowner(ptr) - recordtype node

end else

SYSTEM

76 il

member spec: MEMBER IS recordtype

if (record type not defined)
print ("Error-'record type' record does not exist")
perform yyerroro
return

end if
else

copy record type to current set node (nsn __member name)
locate record type node
nsnmember(ptr) record type node

end else

SEMI COLON insert clause retention clause

alloc set select node

set select clause SEMI COLON

duplicates list: empty
I dupl SEMI COLON

dupl: duplicate spec
I dupl duplicate spec .-...:

duplicate spec: DUPLICATES ARE NOT ALLOWED FOR item spec

item spec: itemname

alloc new nondup node
copy itemname to non dup node
add nondup node to curr _nondup-list
}

item spec COMMA item name

alloc successive non dup nodes ,

copy successive item names to non dup nodes
add successive non_dup nodes to curr non dup_list

8* 77

.

data item list: item desc{
connect new attr-node to record node

I data item list item desc

connect successive attr node(s) to record node} ,' . V.

item desc: level num

allocate and init a new attrnode (NATTRNODE)
NATTR NODE nan level num level number
record node nrn num attr++

data item desc{
if (nan levelnum = level number of current attribute node) ,

connect new attr node to current attr node
if (nan level number > 1)

connect nanparent ptr of new noder
endif

end_if
else if (nan level number > level number of current attr node)

connect nanchild ptr of current attr node to new attr node
connect nanparent ptr of new attr node to current attr node

end else if
else

locate last attr node with same level number
set that node's nan next attr ptr to the new attr node
update current attr pointer :. .

end else

data item desc: item name
{ r

copy item name to attrnode (NATTR NODE)
if (item name not on currnonduplist)

attr node nandup_flag 1 - .4
end if

SEMICOLON data type PERIOD

78

~N

level num: empty

lvlnumber / default value~

I INTEGER

level number =INTEGER

data type: CHARACTER INTEGER

attr node nan lengthl 1 INTEGER
attr node nan length2 =0
attr node nan-type ='c'

FIXED INTEGER

attr node nan lengthl INTEGER
attr node nan length2 = 0
attr node nan_type =T

FIXED INTEGER

attr node nan lengthl =INTEGER

INTEGER

attr node nan length2 =INTEGER

attr node nan-type T f

* insert clause: INSERTION IS AUTOMATIC

set node nan insert = a'

.~~~~,'

INSERTION IS MANUAL

set node nsn insert m'

retention clause: RETENTION IS FIXED
{+

setnode nsn retent '
}

RETENTION IS MANDATORY

set node nsn retent -m'

I RETENTION IS OPTIONAL

set node nsn retent =

set select clause: empty

set_node nsn select 'o'

I SEMI COLON SET SELECTION IS BY set select spec

set select spec: VALUE OF itemname IN recordtype

if(valid attr(item name,record type))
copy 'v' to set select node selectmode
copy itemname to set select node itemname
copy record type to set select node record1
copy BLANK to set select node record2

end if
else

print(" Error-'itemname' not valid for 'record type'")
perform yyerror 0
return

end else

I STRUCTURAL item name IN recordtype

if(validattr(itemname,record-type))

80

copy 's' to set select node selectmode
copy item name to set select node item name
copy record_type to set select node record1.

end if
else

print("Error-'item name' not valid for 'recordtype"')
perform yyerror()
return

EQ itemname IN recordtype

if(previous item name equals this itemname)
if(validattr(itemname,record type))

copy record type to set select node record2
end if
else

print("Error-'itemname' is not valid for 'recordtype"')
perform yyerror 0)

4_ return

end if
else

print("Error-'item name' items do not match") '

perform yyerror () -

return
end else L,

I APPLICATION

copy 'a' to set select node selectmode
copy BLANK to recordi, record2, item name

dmlstatement: setflag
move
" get
.find

store
connect
disconnect
erase
modify

Iperform loop
if then

81

-D. . .

setflag: MOVE f value TO f name

f value: YES

sysflagvalue TRUE} .S .
INO{

sysflagvalue = FALSE

f name: EOF

eof = sysflagvalue

I NOTFOUND{ :
notfound = sysflag_value

/* The MOVE statement is a COBOL assignment statement that assigns a *"
/* value to a particular data field in a record template. We use a
/* list structure for this purpose. *.

move: MOVE itemvalue{ A

if (first move = TRUE)
alloc and init move list
first move.- = FALSE

end if
create new data item node ..-
copy 'item value' to value field in data item node
establish curr tempitem pointer
}

TO item name

copy 'item name' to name field in data item node

82

jet

IN recordtype

if (item name not in recordtype for current schema)
perform error(2)
return t

end if
else i-f ('recordtype' node on move list)

connect curr temp item to record template node
end else if
else -....

create new record template node
copy 'record type' to name field of record template node

connect curr temp item to record template node
add record template node to move list
update currtemprec pointer

end else

/* The GET statement takes the entire current record of the run unit */
or specified data fields of the current record of the run unit

/* and returns the values to the user. *.

get: GET

alloc and init new 'get' node
select list = NULL /* reset select list *-

% .%s S
mm

mm: item list IN record type
{
if ('record_type' is not equal to CIT.RUNUNIT.type)

perform error(3)
return

end if
else

get type = ITEMS in get node
copy recordtype to get node
for (each data item on item list)

if ('data item' is not defined for record_type)
perform error(2)
return

end if
else 7* create pseudo tgt list */

83

copy data item to get node
end else -

end for
end else

record type , .

if ('record_type' is not equal to CIT.RUNUNIT.type)
perform error(3)
return A

end if
else

get type = RETURNALL in get node
copy 'recordtype' to get node

end else

empty

get type = RETURN ALL in get node
copy CIT.RUN _UNIT.type to get node

/* The FIND statements establish the current of run unit, record type, *1 "-'-
/* and set type. *1 rn

find: FIND record selectionexpr curr suppression

/* The FIND ANY means: find any record of type record type whose *-
/* values for iteml through itemn match those in that record's */
/* template in the user work area. *.

record selection expr: ANY recordtype

if ('record type' record template node is not
on move list)

perform error(l)
return

else
alloc and init new 'find' node
findtype = ANY in find node
copy recordtype to find node
alloc and init new abdlstr
alloc and init new tgt list
/* begin forming a RETRIEVE request */
copy "[RETRIEVE ((TEMPLATE = 'recordtype')"

84

*~~~~ ~~~~~ .. .**~~* ~. % . % \ * .

to abdlstr
end if
select list NULL

USING item list IN recordtype *--. .

if ('recordtype' is same as previous 'recordtype')
if (any data item on selectlist is not

.
yp-')

defined for record type)
perform error(2) - ,4

return
end if
else

create tgt list item for all attributes
of 'recordtype' record r

for (each data item on select list)
if ('data item' not on move list)

perform error(l)
return

end if
else

get 'item value' from move list
concat "and ('data item' = 'itemvalue')"

to abdl str
endelse .-.

end for
concat ")('tgt list') by DBKEY]" to abdl str
connect abdl str to find node

end else
end if-
else

perform error(6)
return

end else

/* The FIND CURRENT means: Make the current of settype the current */
/* record of the run unit.

I CURRENT recordtype WITHIN settype{
if (CIT.settype.TYPE is not equal to 'recordtype')

perform error(7)
return

end if
else

/* current of rununit becomes current of 'settype' */

85

alloc and init new 'find' node
find type = CURRENT in find node
copy recordtype to find node
copy set type to find node 4
copy CIT.settype.dbkey to find node

end else

/* The FIND DUPLICATE means: Find the first record in the current set_*/
* type occurrence whose value for itemi through itemn matches those */
/* for the same items in the current set type occurrence, not the UWA */
/* record template. This implementation assumes the records being re-
/* quested are already in a buffer. *1

I DUPLICATE WITHIN settype

alloc and init new 'find' node
find type = DUPLICATE in find node ..
copy set type to find node
select list = NULL /* reset select list */

USING item list IN record_type

if ((record_type is not CIT.settype.TYPE) or
(recordtype is not CIT.set type.member))

perform error(S)
return

end if
else-

copy recordtype to find node
for (each data item on select list)

if (any data item on select list is not
defined for record type)
perform error(2)
return

end if
else /* create a pseudo tgt list */

copy data item to find node
end else

end for
end else

/* This statement means: Find the FIRST, LAST, NEXT, or PRIOR record-*/
/* type record within the current settype occurrence. The 11 token */

/* takes the value FIRST, LAST, NEXT, or PRIOR. */
[11 recordtype WITHIN settype

86

~~~y%~ e AL.,*.*, . .



* - r -

if ('recordtype' is not a valid member type
for 'set type')

perform error(5)

return
end if
else

copy recordtype to find node II
copy settype to find iode

/* RETRIEVE all member records of set occurrence

alloc and init new abdlistr
alloc and init new tgt lstr
copy "[RETRIEVE(

(TEMPLATE = CIT.set type.member) and
(MEMBER.set type = CIT.settype.ownerdbkey))"
to abdl str *-

create tgt list for all attributes of member record
concat "('tgt list') by DBKEY]" to abdlstr
connect abdlstr to find node

end else

/* The FIND OWNER means: Find the owner of the current set type occurrence

I OWNER WITHIN set type

alloc and init 'find' node
find type = OWNER in find node
copy settype to find node
alloc and init new abdl str
alloc and init new tgtlist

/* form RETRIEVE request */ 9
copy "[RETRIEVE ((TEMPLATE -CIT.settype.owner)

and (DBKEY = CIT.set_type.ownerdbkey))"
to abdIstr

create tgt list for all attributes of owner record
concat "('tgt ist')]" to abdl str -

connect abdlstr to find node

/* This statement means: Find the first recordtype record within the */

/* current settype occurrence whose values for item1 through itemn */

/* match the values found in the record type template in the UWA, not */

87

* ?**.. *'~(~.* ~ q -*



/* the values in the current of settype as in the FIND DUPLICATE. *.

I record_lype WITHIN settype CURRENT

if ('record type' not a member type of 'settype')
perform error(5)
return

end if
else

alloc and init new 'find' node
findtype = WITHIN in find node
copy recordtype to find node
copy settype to find node
alloc and init new abdl str
alloc and init new tgt_list

/* begin forming RETRIEVE request */

copy "[RETRIEVE ((TEMPLATE = 'record type') and
(MEMBER.set type = CIT.set_type.owner dbkey)"
to abdl str

create tgt list for all attributes of 'recordtype'
record

select list -NULL /* reset select list
endelse}

USING item list IN recordtype %-%

if (any data item on select list is not defined
for 'record type')

perform error(2)
return

end if
else if (any data item on select list

not on move list)
perform error(l) '
return

end else if
else
for (each data item on select list)

get 'itemvaiue' from move list
concat "and ('data item' = 'itemvalue')
to abdl str

end for
concat ")('tgt list') by DBKEY]" to abdl str
connect abdl str to find node

*, 88



end else

I ' .,"

11: FIRST{ .-:"

alloc and init new 'find' node
find type FIRST in find node

LAST

alloc and init new 'find' node N
findtype LAST in find node

alloc and init new 'find' node
find type = NEXT in find node

PRIOR

alloc and init new 'find' node
find type PRIOR in find node

curr suppression: LSQUARE suppexpr RSQUARE
empty

supp expr: SUPPRESS UPDATE
UPDATE type spec

type spec: set type
{
add settype to suppression list
I

I type spec COMMA settype
I... {

add successive settypes to suppression list

89

S.b



/* This statement means: Delete the current record of the run unit, *,
/* and all of its descendents regardless of whether they are owners of */

/* other sets. .,

erase: ERASE ALL recordtype --

if ('record type' is not CIT.RUN UNIT.type)

perform error(3)
return

end if
else

alloc and init new 'erase' node *..". -

erase type = ALL in erase node
for (each settype in schema)

if (CIT.set type.ownerdbkey= CIT.RUN UNIT.dbkey)
membertype = CIT.set type.member

/* form RETRIEVE to get member records *'
alloc and init new abdl str
copy"[RETRIEVE(MEMBER.set type -CIT.RUNUNIT.dbkey)

(DBKEY) by DBKEYI" to abdl str
connect abdl str to erase node

1* erase member records */
alloc and init new abdl str
copy"[DELETE((TEMPLATE -'membertype') and

(DBKEY = ***))]I to abdl str
connect abdl str to erase node

/* delete all descendants of member records */
perform erase all (membertype,erase node)

end if
end or ,"

/* delete current of RUNUNIT */
alloc and init new abdlstr ,

copy "[DELETE((TEMPLATE = 'record type') and
(DBKEY = CIT.RUNUNIT.dbkey))]" to abdlstr

connect abdl str to erase node
endelse

90

.4

d4 Y°



/* This statement means: Delete the current record of the run unit if*/
1* and only if, it is not the owner of a non-empty set. ..

ERASE recordtype

if ('recordtype' is not CIT.RUNUNIT.type)
perform error (3)

end if
else

/* erase one record - current of RUNUNIT */

alloc and init new 'erase' node
erasetype = NULL in erase node

/* form RETRIEVE to see if 'recordtype' is */

/* owner of non empty set */

alloc and init new abdi str
copy "[RETREIVE(" to abdlstr
first time = TRUE
for (each settype in schema)
if ('record_type' is owner type of set type)

if (first time)
concat "(MEMBER.set type CIT.RUN UNIT.dbkey)"

to abdi str
first time FALSE

end if
else

concat "or (MEMBER.set type = CIT.RUNUNIT.dbkey)"
to abdi str

end else
end if

end for v -
concat ")(DBKEY) by DBKEY]" to abdlstr
connect abdlstr to erase node

/* for DELETE request */
alloc and init new abdl str
copy "[DELETE ((TEMPLATE CIT.RUNUNIT.type) and

(DBKEY = CIT.RUNUNIT.dbkey))]" to abdlstr
connect abdlstr to erase node -- 3'

end else

}



7-7 . - . IV- 7 1 77 '-- 1

/* The STORE means: Create a new record in the database using values *1
/* supplied by the user via MOVE statements, for the data items of */
/* the specified recordtype. The is connected to all sets in which *1
/* INSERTION IS AUTOMATIC. The appropriate occurrence of the sets */
/* must be selected before the new record can be connected. This is */
/* done based on the SET SELECTION clause specified in the database *-
/* schema definition for the sets in question. -.

store: STORE recordtype

if ('record__ype' record template node is not on move list)
perform error(l)
return

end if
tI

alloc and init new 'store' node
alloc and init new abdl str .-

copy "[RETRIEVE (" to abdl str
first time TRUE
for (each data item in schema for 'recordtype')

if (nan dup flag is set)
if (data item in move list 'record type' record template)

get data item value from move list
if (first time = TRUE)

concat" ((TEMPLATE = 'recordtype') and "
('data item' = 'item value'))" to abdl str

first time = FALSE
end if-
else
concat "or ((TEMPLATE = 'record type') and

('data item' = 'item value'))" to abdlstr
end else """

end if
end if' -

end for
concat")(DBKEY) by DBKEYJ" to abdlstr
connect retrieve request to store node
alloc and init new abdlstr

/* Form an INSERT request */
copy" [INSERT (<TEMPLATE,'record_type'> ,<D BKEY,***>"I to abdl str
for (each 'data item' in schema for 'record type')

if ('data item' not on move list for 'recordtype')
• .perform error(4)

return
end if
else

92

X4



get data item value from move list
concat",<'item name','item value'>" to abdlstr

end else
end for

/* Now determine which set occurrences the new record belongs to */
/* and add proper attribute-value pairs to the INSERT abdl str to L10
/* indicate set membership. The following FOR loop and CASE state-*/
1* ment fill the INSERT abdlstr with the proper pairs.

for (each set type in schema in which 'record type' is a member)
case (set selection mode) of

/* set selection is by applicaton *1
a: perform by application(INSERT abdlstr)

/* set selection is by value *1
v: perform by_value(INSERT abdl str)

/* set selection is by structural *-
s: perform by structural(INSERT abdlstr)

/* no set selection criteria was given *"
o: perform by_default(INSERT abdlstr)

end case
end for
concat "]" to INSERT abdl str
connect INSERT abdl str to store node
alloc and init suppression list
} e..5,

curr suppression

connect suppression list to store node

/* The MODIFY means: Modify the entire current record of the run unit */
supplied by the user via the UWA.

modify: MODIFY

select list - NULL /P reset select list */
Y' }.' .

'" """ """" "" " "" " " " " "'".,', "._ " "" - .,2...-, . " ..". , "'"*,....:'2 " . ."93 .-'

7 1



item list IN recordtype

if ('recordtype' is not current of run unit)
perform error(3)!-
return

end if
if ('recordtype' recordtemplate node is not on move list)

perform error(l)
return

end if
if (any data item on select list not defined for 'recordtype')

perform error(2)
return

end if
else

alloc and init new 'modify' node
locate record template node on move list for 'record type'
for (each data item on select list)

alloc and init new abdlstr
/* form UPDATE request */
copy "[ UPDATE ((TEMPLATE = 'recordtype') and

(DBKEY = CIT.RUN UNIT.dbkey))" to abdl str
get 'item value' from move list
concat "('data item' = 'item value')]" to abdl str
connect abdl str to 'modify' node

-., end for
end else

MODIFY record type
.. {

select list = NULL /* reset select list */
if ('record type' not current of run unit)

perform error(3)
return

end if
if ('recordtype' record template node is not on move list)

perform error(l)
return

end if
else

alloc and init new 'modify' node
for (each data item in record type) "

if (data item not on move list for 'record type')
perform yyerror(4)
return 1

i.:end if I

94

i **i.*-**°K 1' K



else
alloc and init new abdl str

/* form an UPDATE request */
copy "[ UPDATE ((TEMPLATE = 'record type') and

(DBKEY = CIT.RUN UNIT.dbkey)) to abdl str

get new 'item value' from move list

concat "('data item' = 'itemvalue')]" to abdlstr 14,
connect abdl str to 'modify' node

end else
end for

end else

/* The CONNECT means: Connect the current record of the run unit to the */
/* current occurrence of the specified set type. There may be several *1
/* sets listed in the statement. */

connect: CONNECT record type TO

if ('record type' is not current of run unit)

perform error(3)

return
end if
else

alloc and init connect list

end else

set type list

alloc and init 'connect' node
for (each 'set type' on connect list)

if ('record type' is not a member type record for 'set type')

or (INSERTION is not manual)
perform error(5)
return

end if
else

alloc and init new abdl str

copy "[UPDATE ((TEMPLATE = 'record type') and
(DBKEY = CIT.RUNUNIT.dbkey))
(MEMBER.set type = CIT.set type.owner dbkey)]"
to abdl str

connect new abdl str to 'connect' node

end else

95
°''4 i



- -164 996 THE INPLEMENTATIO4 OF A NETUORK CODASYL-DML INTERFACE 2fl2
FOR THE NULTI-LINGUAL DATABASE SYSTEN(U) NAlVAL
POSTGRADUATE SCHOOL MONTEREY CA B ENDI 19 DEC 85

UNCLSSIFIED F/G 9/2 NL

I Ihhhhhhhhhhhh

Slflllff



gg JL2

L6 12.0

I

4

111111 1.6liiiloan

MICRCOP REO UTIO TES 22AR
-T N - R P 6 - O T N) . - % -



end for
connect list - NULL /* reset connect list */

set type list: set type

add 'set type' to connect list

set type list COMMA set type

add successive 'set type'(s) to connect list

/* The DISCONNECT means: Disconnect the current record of the run unit *1
/* from the set type occurrence that contains the record. */

disconnect: DISCONNECT recordtype FROM

if ('recordtype' record is not current record of run unit)
perform error(3)
return

end if
else-

alloc and init new connect list "
end else'

settype list{
alloc and init 'disconnect' node
for (each set type on connect list)

if ('recordtype' is not a member type record for 'settype')
perform error(5)
return *A

end if
else

alloc and init new abdl str
copy "[UPDATE ((TEMPLATE = 'recordtype') and

(DBKEY = CIT.RUNUNIT.dbkey))
(MEMBER.settype = NULL)]"
to abdl str

connect abdl-str to 'disconnect' node
end else

end for

:-.:;. / r..2..-. ...; '.2.2.'i ' % .;". . 't, -g8-'



connect list =NULL /* reset connect list S

}J

* perform loop: PERFORM UNTIL bb EQ cc
END PERFORM

bb: EOF
I NOTFOUND

cc: YES
INO

item list: item name

put item name on select list

I item list COMMA item name

put successive item names on select list

AA

record type: IDENTIFIER

set type: IDENTIFIER

item name: IDENTIFIER4

g7



item value: IDENTIFIER '
-INTEGER

proc error(err code)
/* This procedure prints error messages, causes data structures to */
/* be de-allocated, and causes proc yyerror to be executed. */

case err code of
1: print("Error - must initialize 'recordtype' record template")

2: print("Error - 'data item' not defined in 'record type"')

3: print("Error - 'recordtype' is not current record of run unit")

4: print("Error - attempting to modify or store record without
giving value of 'data-item"')

5: print("Error - 'record type' record does not belong to 'set type"')

6: print("Error - recordtypes specified are not the same")

7: print("Error - 'record type' is not current of 'set type"')

8: print("Error - 'recordtype' must be a member record of 'settype"')

end case
perform cleanupo /* free data structures */
perform yyerror 0
return

end error;

proc byapplication (abdlstr)

if (set node nsn insert ='a' ) /* insertion mode is automatic */
concat",<MEMBER.settype,CIT.settype.ownerdbkey>" to abdlstr

end if
else/* insertion mode is manual */

concat",<MEMBER.set-type,NULL>" to INSERT abdl str
end else

end byapplication;

*1U

•g



T.~~~ 20 F.57F

1 4

proc byvalue(abdl str)

locate data item node in schema for set select node item name
in set select node record1

if (nan dup_flag set) ,.,.1
get owner record type of set type from schema
if (owner record type node not on move list) or

(dataitem not on move list)
perform error(4)
return

end if
else

if (set node nsn insert 'a') /* automatic insertion */
get data item value from move list
copy"[RETRIEVE((TEMPLATE = owner recordtype) and : .

(itemname = 'item value')) (DBKEY)j" to abdl str
connect new retrieve request to store node
concat".<MEMBER.set type,***>" to INSERT abdl str

end if
else /* manual insertion */

concat",<MEMBER.set type,NULL>" to INSERT abdl str
end else

end else
end if /* nan dup.flag */

end by value;

proc by structural(abdlstr)

locate data item nose in schema for set select node item name
in set select node recordl recordtype

if (nan dup_flag set)
get record I name from set select node for settype
if ('recordl' record template node not on move list) or

(data item not on move list)
perform error(4)
return

end if
else

if (set node nsn insert W 'a') /* automatic insertion */
get data item value from move list
get record2 name from set select node for set type
copy"[RETRIEVE ((TEMPLATE = record2 name) and

(itemname - item value)) (DBKEY)" to abdl str

99 % %



connect new retrieve request to store node
concat",<MEMBER.settype,***>" to INSERT abdlstr

end if
else-/* manual insertion ,/

concat",<MEMBER.set type,NULL>" to INSERT abdlstr
endelse

end else
end if /* nan dupflag */

end by structural; 4

proc by default(abdl str)

print("Warning - Attempting to store a record with no .-.
particular set selection given. Will assume 'BY --.
APPLICATION"')

if (set node nsn insert 'a') /* automatic insertion */ """
concat",< MEMBER.set type,CIT.settype.ownerdbkey>"

to INSERT abdlstr -

end if
else /* manual insertion */

concat",<MEMBER.set type,NULL>" to INSERT abdl str .':'.
end else 

4

endbydefault; ,

proc erase all (recordtype,erase node)

string membertype;

for (each set type in schema)
if ('recordtype' is owner type of set type)

member type = member type of settype
/* for RETRIEVE to get members of 'set type' */
alloc and init new abdl str
copy "[RETRIEVE(MEMBER.set type - ***)(DBKEY) by DBKEY]"

to abdl str
connect abdl str to erase node
/* delete member records * /
alloc and init new abdl str
copy "IDELETE((TEMPLATE = 'membertype') and (DBKEY *

to abdl str

•. "100
4.#



connect abdI str to erase node
/ * erase descendants of member records /
erase aHl(member_type,erase node)

end if 4

e n dfor
return(erase node)

end erase all

101*



* - * .-. .-. - ~ - 7 .- . - -7-

APPENDIX C - THE KC PROGRAM SPECIFICATIONS

module KERNELCONTROLLERO

/* This procedure accomplishes the following: *
1* Depending on the dmi operation the corresponding *
/* procedure is called. *

case (dmi operation) '-S

CreateD B:
perform LOADTABLESO;

Disconnect:
Connect
Modfltem
ModfRec

perform REQUESTHANDLERO;
FindReq:

perform FINDREQUESTSHANDLERO;
StorReq:

perform STOREREQUESTS HA NDLERO;
EraReq:

perform ERASEREQUESTSHANDLERO;UGetReq:
perform DML KFS 0;

MoveReq:

default:S /* This handles any errors *
end case

end module

LOADTABLES()

/ * This procedure accomplishes the following: ~
/* (1) Calls dbl template which is already I.

/* defined in the Test Interface. It loads the
1* template file.

/* (2) Calls dbl dir tbls() also defined in
/* the Test Interface. It loads the descriptor

/files.

perform DBLTEMPLATEO;

102

S



777777F- . .. +

perform DBL DIR TBLSO;

endproc

REQUESTHANDLER 0) .t

/* This procedure accomplishes the following:
/* (1) Calls dmlexecute untill all CODASYL-DML
/* queries associated with abdl req data
/* structures are processed. -.

1* (2) If query is Connect or Disconnect, then
/* appropriate action is taken to update the CIT
/* table.{
while (! end of request )

perform DMLEXECUTE(abdlistr,file_ptr);
if (operation ==-Connect)

while (connect list != NULL)

current set type = run unit record name
current set dbkey run unitdbkey

if (operation == Disconnect) 
.. -

while (connect list != NULL)

current set{type

current set dbkey 0

}
}

end_proc

FIND REQUESTS HANDLERO

/* This procedure accomplishes the following:
/* Depending on the findoperation takes
/* appropriate action, then set correct
/* location in the result buffer.{
case (find operation)

AnyFin:
perform DMLEXECUTE(abdlstr,fileptr)

103

p1



if (dont update !- TRUE)
perform Find _update()

FirstFin:
perform DMLEXECUTE(abdlstr,file.ptr)
locate first record in the result buffer
create temporary string to hold this record
current buff al -dbkey value of this record
increment buffer location
if (dont update !- TRUE)
perform FindupdateO

LastFin:
perform DMLEXECUTE(abdlstr,fileptr)

locate the last record in the result buffer
create temporary string to hold this record
currentbuff val = dbkey value of this record
if (dont update != TRUE)
perform Find update()

NextFin:
first find correct findnode corresponding r
NextFin request
locate correct result file
free temporary string
reload temporary string with the next record value
current buff val = dbkey value of this record
increment buffer location
if (dont update != TRUE)
perform FindupdateO

PriorFin:
first find correct findnode corresponding
PriorFin request
locate correct result file
open this file to read again
locate prior record of the current record
free temporary string
reload temporary string with this record value
current buff val = dbkey value of this record
decrement buffer location
if (dont update != TRUE)
perform Findupdate 0  

0

OwnerFin:
perform DML EXECUTE(abdl str,fi_ptr) -

create temporary string to hold the result
if (dont update != TRUE)
perform Findupdate 0

WithinFin:
perform DMLEXECUTE(abdlstr,fileptr)

104

-- S, !-. -.



create temporary string to hold the first record
current buff val = dbkey value of this record
increment buffer location
if (dont update != TRUE)
perform Find update0

CurFin:
if (dont update != TRUE)
perform Find__updateO

DupFin:
first find correct find node corresponding
DupFin request
locate correct result file
while (current buffer location <=

number of result in the result buffer)
free temporary string
reload temporary string with this record value
current buff_val = dbkey value of this record
make comparesion to find duplicate record

end while
if (dontupdate != TRUE)
perform Find update.

end case

end_proc

FINDUPDATE0)

/* This procedure update the CIT table
/* depending on request{
initialize currency table pointer
case (findoperation)

AnyFin:
locate first record in the result buffer
create temporary string to hold this record
if (set list == NULL)

set set_ptr
/* determine this record belongs to which set */
while (set.ptr != NULL)

:- {
if (!on suppres list(set name))

1%~ {
if (set owner name -= recordname){
if (setname on the CIT table)

105



current buffval dbkey value of this record
current set ownerdbkey = current buff val
current set dbkey = current buff val

else

allocate new cur set node
current buff val = dbkey value of this record 4
current set owner dbkey = current buff val --. ,
current set dbkey = current buffval

get next settr t

else

set fsetptr to set list of AnyFin node
while (fsetptr! NULL)
store dbkey value(s) of owner set(s) to
correct field of set list structure

endwhile
current buff val = dbkey value of this record
while (set list != NULL)

if (!on suppres list(set name))

if (set_nr-, on the CIT table)

current set owner dbkey = set list dbkey
current set dbkey = currentbuffval

else

allocate new cur set node
current set ownerdbkey = set list dbkey
current set dbkey = current buffval

.1;4

get next set list

/* update current run unit */
run unit record name f rec name of find.ptr

106

*" **.p:-.**-



* . -*. L

run unit dbkey = current buff val

PriorFin:
FirstFin:
WithinFin:
LastFin:
NextFin:

run unit record name rec name of find_ptr
run unit'dbkey =current buff val
current set type = rec name of findptr
current set dbkey = current buff val

OwnerFin:
run unit record name =current set owner name
run unitdbkey = current set owner _dbkey
current set type = current set owner name .
current set dbkey = current set owner dbkey

CurFin:
run unit record name = current settype
run unit dbkey = current set dbkey

end case
}
end_proc

STORE REQUESTS HAND LERO .

/* This procedure executes correct request(s)
/* and update the CIT table

perform(DMLEXECUTE(abdl str,file_ptr)
if (!resutlts are not returned)

print(Error nonduplicate attribute(s) have
values in the database) 14

else

set member ptr ..
while (member ptr !- NULL)

if (selection mode is by VALUE or by STRUCTURAL)

{z
if (memberptr->rnflag == TRUE)

get next memberptr
else if (insertion mode is AUTOMATIC)

10a.

::".?-? .- ":":, .,-??.2.-'-?'.-i'."."" >Y:?." '' " 'y " " '' J/'"'-"/, :'",2:: "'. "l"a ir" '



XT -. V .. T. - - PO ,- -. - --

perform DMLEXECUTE(abdl str,file_ptr)
if (results are not returned) "

print (Error the owner of the set type does
not have dbkey value)

else

perform BUILDREQUEST(store ptr,memberptr)
get next memberptr j 4

else

else

if (stored record is a owner record)
perform BUILD REQUEST (store_ptr) I

perform DMLEXECUTE(store abdlistr,fileptr)

11* end else */
/* update CIT table */
if (dont update != TRUE)

run unit record name = rec name of storeptr
run unit dbkey -last dbkey -1
if (stored record is not a owner record)

{
while (member_ptr != NULL)

if (!on suppres list(set name))

if (selection mode is by VALUE or by STRUCTURAL)

if (insertionmode is AUTOMATIC)
{
if (setname on the CIT table)

current set type = rununit record name
current set dbkey = run unit dbkey

if (member.ptr->rnflag == TRUE)
current set owner dbkey = 0

els,. E
t:'rrent set ownerdbkey = current buffval

1
108



else "

allocate new cur set node
current set dbkey = rununitdbkey
current set owner dbkey - current buff val

else

else

if (insertionmode is AUTOMATIC)

current set type = run unit record name
current set dbkey run unit dbkey

else ,-.'-

get next memberptr

endproc

BUILDREQUEST (storeptr,memberptr)

/* This procedure accomplishes the following:
/* Builds an abdl INSERT request in the store
/* template
{
allocate enough space for store template
if (StorFlag != TRUE)

fill store template with contents of store abdl req
'til an '*' is hit
fill store template with the last dbkey of schema
increment dbkey value of schema
skip over the asteriks we just filled with a value
StorFlag = TRUE

if ((mem flag -= TRUE) I
selection mode is by APPLICATION I

109



selectionmode is by OPTIONAL) ," .

fill store template with the rest of store abdl req
'til an ''is hit

else

fill store template with contents of store abdl req
'til an '*' is hit
fetch a value from the result file t-..

put this value into store template
fill store template with the rest of storeabdl req
'til an ' ' is hit

copy store template to store abdl req t

endproc

ERASEREQUESTSHANDLERO

/* This procedure accomplishes the following:
/* Depending on the erase operation takes

/* appropriate action

if (erase operation = RecEra) :.

perform DMLEXECUTE(erase ret str,fileptr)
if (results arenot returned)

perform DML _EXECUTE(eraseabdl str,fileptr)
1* update current run unit */

run _unit recordname =
run unitdbkey = 0

else

print (Error the record being deleted is an
owner of a non empty set))~}

else

/* Erase ALL operation *1
while (member.ptr != NULL)

perform ERASE _MEMBER(memberptr)

110



r a

get next member _. 

Jr

perform DML EXECUTE(erase abdl str,fileptr)
/* update current run unit */
run unit record name =

run-unit-dbkey 0

endproc

ERASE _MEMBER (memberptr)

/* This procedure accomplishes the following:
/* If the record being deleted is an owner of
/* other set, we must delete its member record(s)

perform DMLEXECUTE (memberabdl,fileptr)
open correct buffer file to get a value
/* This is our stopping condition */ _

while (all elements in the result buffer have been used)

pass over attribute name (DBKEY)
current buff val = value of this attribute
fill member template with contents of member delete req
'til an '"' is hit
fetch a value from the result file
put this value into member template
fill member template with the rest of member delete req
'til an ''is hit
If (this member record being deleted is an

owner of other set)

complete retrieve request using current buff val
perform ERASE MEMBER(member-ptr)

perform DMLEXECUTE(member template,fileyptr)
increment buffer location

perform free cur set(set name)

endproc

FREE CUR SET(set name)

/* This procedure accomplishes the following:
/* Frees given set type on the CIT table

111

'.!



* initialize currency setptr
* current flag = FALSE

while ((setptr != NULL) && (current flag ==FALSE))

if (setptr->name ==set name)

free (settr ,.% %

current flag =TRUE

if (current flag != TRUE)
get next setptr

endproc

DMLEXECUTE (string,f ileptr)

/* This procedure accomplishes the following: -
1(1) Sends the request to MBDS using

* /* TIS$TrafUnit() which is defined in the Test
-/* Interface

/* (2) Calls din]_check requests left() to ensure

1* that all requests have been received*

* perform TIS$TrafUnit (string)
perform dm1_I-check requests left(fileyptr)

* endproc

* DMLCHECKREQUESTSLEFT(fileptr)

- /~ This procedure accomplishes the following:
* 1* (1) Receives the message from MBDS by calling

/* TIR$Message() which is define6d in the Test
*/* Interface

*/* (2) Gets the message -type by calling
/* TIRiType

/* (3) If not all the responses to the request 
4/* have been returned, a loop is entered. Within

-/* this loop a case statement separates the
/responses received by message type

112



/* (4) If the response contained no errors, ...
/* then procedure TI R$Reqres( is called to
/* receive the response from MBDS

/* (5) If no results are returned, then

/* the boolean results are not returned is set
/* to TRUE

/* (6) If the message contained an error,
/* then procedure TIR$ErrorMessage is called
/* to get the error message and then procedure
/* TI ErrRes output is called to output the A.-

* error message '.

{
results are not returned FALSE ., -
done = FALSE
while (!done)

TI R$Message()
msg_type = TIR$Type(
case (msg type)

CH_ReqRes:
done = TIR$Reqres(&rid,response)
if (string length of (response) == 0)

results are not returned = TRUE
else

t = fileresults(fileptr)
if ( t > max length of previous results)

max length f t ,,

ReqsWithErr:

/* handle error conditions */

end proc

FILERESULTS(fileyptr)

/* This procedure accomplishes the following: 1
/* (1) Opens a file to place the results in/,
/* (2) Keep track of how many results have
/* been received/,
/* (3) Puts the results in their own line

113

***\~*'~\A ..A,.\ f * ~A ~ '~ A ~ *'~'N



/* (4) Returns the length of the response

/* Next two statements are initialization */
initialize buff_ c
initialize num values
/* If this ij the first time then we open i l

file for write status */
if (file_ptr->nfi status == FIRSTTIME)

perform initbuffero
open file for write mode
set nfi status to RESTTIME
buff loc = buff loc + 1

else
open file for append status

res len = string length of (response)
currpos = 1
/* Read first attribute from response *"
read dml response(first attr,curr_pos)

/* Put this attribute in buffer /.-
put in buff(first attr)

/* Read the value corresponding to this attribute ~

readdml1response (tempstr,curr_pos)

* 1* Put this value in the buffer ~
put in buff(tempstr)
save_max = curr.pos

/* Increment the count of values */
numvalues = num values + I

/* While we are not at the end of the response */
while (currpos < (res_len - 2)) :.4.

readdml1response(tempstr,curr.pos)
/* If the attribute name just read in is not the same

as the first attribute name proviously read in,-
then we put it and its value on the same line in
the buffer as the first attribute */

if (first attr != temps!tr)

put in buff(tempstr)114

- 114

.....



read dml response(tempstr,currpos)
put in buff(temp str)

max char = currpos
max char2 = max char - cur length
if (max char2 > save max)
savemax = max char2

/* If they are the same, then we need to start a new
line in the buffer */

else4

cur length = curr.pos - val len
put in buff("0)
put in buff(temp str)
read dml response(temp str,curr_pos)
put inbuff(temp str)
num values = num values + 1

close file
open file
return(save max)

endproc

DMLKFS 0

/* This procedure accomplishes the following:
/* Pulls all attributes or some specific
/* attribute(s) of a record and displays
/* it to the user

first find correct get node
if (get operation - GetItem)
{
while ( i <= number of attributes of this record){
pull specific attributes and its values from <'.

temp str of net file info structure
display them to the user}-

else{
while ( i < = number Of attributes of this record)

display temp str to the user

111



endproc

PUT IN BUFF(string)

/* This procedure accomplishes the following:
" /* Puts the incoming string form file results

/* into the correct file buffer

endproc

INIT BUFFERO

/* This procedure accomplishes the following:
/* (1) Copies the user's ID name into a temp

string

/* (2) Converts the current dmi buff count to
/* a string

/* (3) Increments the above count to reflect
/* the fact that the next time this procedure
/* is called it initialize a new buffer

/* (4) strcat above count to temp

/* (5) strcat BUFF FILE SUFFIX to temp

/* (6) strcpy temp over to nfibuff.fi fname

end._proc ii'

EDDML RESPONSE(outstr,pos)

/* This procedure accomplishes the following:
/* Reads the next value of the response buffer

load outstr with the contents of response until
an End Marker is detected
put a ''in outstr
}
end.proc

116

J*J



7. 77

ONSUPPRESLIST(set name)

/* This procedure accomplishes the following:
/* Checks the given set on the suppres list or not

/set correct suppptr *
if (dmi operation == FindReq)

set supp~ptr
else

set suppyptr
while (suppyptr!= NULL)

if (suppyptr->set name ==set name)
return(TRUE)

get next suppyptr

return(FALSE)

endproc

p...

117



APPENDIX D - THE CODASYL-DML USERS' MANUAL

A. OVERVIEW ii
The CODASYL-DML language interface allows the user to input

transactions from either a file or the terminal. A transaction may take the form

of either database descriptions of a new database, or CODASYL-DML requests

against an existing database. Database descriptions may only be input from a -.

file, while CODASYL-DML requests may be input from either a file or the

terminal. The CODASYL-DML language interface is menu-driven. When the

transactions are read from either a file or the terminal, they are stored in the

interface. If the transactions are database descriptions, they are executed

automatically by the system. If the transactions are CODASYL-DML requests,
the user is prompted by another menu to selectively choose an individual ,.- '

CODASYL-DML request to be processed. The menus provide an easy and

efficient way to allow the user to view and select the methods in which to process

CODASYL-DML transactions. Each menu is tied to its predecessor, so that by

exiting each menu the user is moved up the "menu tree". This allows the user to

perform multiple tasks in a single session.

B. USING THE SYSTEM

There are two operations the user may perform. The user may either define

a new database or process requests against an existing database. The first menu

displayed prompts the user for an operation to perform. This menu, hereafter

referred to as MENU1, looks like the following:

Enter type of operation desired
(1) - load a new database
(p) - process old database
(x) - return to the operating system

ACTION --- >

118



Upon selecting the desired operation, the user is prompted to enter the name

of the database to be used. When loading a new database, the database name

provided may not presently exist in the database schema. Likewise, when

processing requests against an existing database, the database name provided has

to exist in the present database schema. In either case, if an error occurs, the

user is told to rekey a different name. The session continues once a valid name is

entered.

If the "p" operation is selected from MENU1, a second menu is displayed

that asks for the mode of input. This input may come from a data file or

interactively from the terminal. This generic menu, MENU2, looks like the

following:

Enter mode of input desired
(f) - read in a group of transactions from a file
(t) - read in transactions from the terminal
(x)- return to the previous menu

ACTION --- >.

If users wish to read transactions from a file, they are prompted to provide the

name of the file that contains those transactions. If users wish to enter

transactions directly from the terminal, a message is displayed reminding them of

the correct format and special characters that are to be used.

If the "1" operation is selected from MENU1, a second menu is displayed that

is identical to MENU2 except that the "t" option is omitted. Since the

transaction list stores both database descriptions and CODASYL-DML requests,

two different access methods have to be employed to send the two types of

transactions to the KMS. Therefore, our discussion branches to handle the two

processes the user may encounter.

1. Processing Database Descriptions

When the user has specified the filename of the schema, further user ..

intervention is not required. It does not make sense to process only a single

schema definition statement out of a set of schema definition statements that ,1

produce a new database, since they all have to be processed at once and in a

specific order. Therefore, the mode of input is limited to files, and the
" 119 '

. ! -



4

transaction list of schema definition statements is automatically executed by the

system. Since all the schema definition statements have to be sent at once to

form a new database, control should not return to MENU2 where further

transactions may be input. Instead, control returns to MENU1 where the user . -i
may select a new operation or a new database to process against.

2. Processing CODASYL-DML Requests

In this case, after users have specified the mode of input, they conduct an

interactive session with the system. First, all CODASYL-DML requests are

listed to the screen. As the CODASYL-DML requests are listed from the

transaction list, a number is assigned to each CODASYL-DML request in

ascending order starting with the number one. The number is printed on the

screen beside the first line of each CODASYL-DML request. Next, an access

menu, called MENU3, is displayed which looks like the following:

Pick the number or letter of the action desired
(num) - execute one of the preceding CODASYL-DML requests
(d) - redisplay the list of CODASYL-DML requests
(x) - return to the previous menu

ACTION ---- >

Since the displayed CODASYL-DML requests may exceed the vertical

height of the screen, only a full screen of CODASYL-DML requests are displayed

at one time. If the desired CODASYL-DML request is not displayed on the

current page, the user may depress the RETURN key to display the next page of

CODASYL-DML requests. If the user only desires to display a certain number of

lines, after the first page is displayed the user may enter a number, and only that

many lines of CODASYL-DML requests are displayed. If users are only looking

for certain CODASYL-DML requests, once they have found them, they do not

have to page through the entire transaction list. By depressing the "q" key,

control is broken from listing CODASYL-DML requests, and MENU3 is

displayed. Under normal conditions, when the end of the transaction list has

been viewed, MENU3 appears.

120



. ---.- ... 

Since CODASYL-DML requests are independent items, the order in

which they are processed does not matter. The users have the choice of

executing however many CODASYL-DML requests they desire. A loop causes

.," the transaction list and MENU3 to be redisplayed after each CODASYL-DML ".*.b

request has been executed so that further choices may be made. Unlike

processing the schema definition, control returns to MENU2 since the user may

have more than one file of CODASYL-DML requests against a particular

database, or the user may wish to input some extra CODASYL-DML requests

directly from the terminal. Once the user is finished processing on this particular

database, the user may exit back to" MENU1 to either change operations or exit

to the operating system.

C. DATA FORMAT

When reading transactions from a file or the terminal, there has to be some

way of distinguishing when one transaction ends and the next begins.

Transactions are allowed to span multiple lines, as evidenced by a typical multi-

level MOVE statements followed by a STORE" statement. This example also

shows that our definition of transaction incorporates one or more requests. This

allows a group of logically related requests to be executed as a group. Since the

system is reading the input line by line, an end-of-transaction flag is required. In

our system this flag is the "0" character. Likewise, the system needs to know

when the end of the input stream has been reached. In our system the end-of-file

flag is represented by the "$" character. The following is an example of an input

stream with the necessary flags that are required when multiple transactions are

entered:

11 .

• t

," ° '

.1y

:,11

" '- ," .,.", - "., " ",, ".". " "" "., "'"" ' - •. . .. - •" " .'' .' " t ,,-'' , " "121 - - L "



TRANSACTION #1 "--'

TRANSACTION #2
REQUEST #1
REQUEST #2

REQUEST #n __
at

TRANSACTION #3 ,

TRANSACTION #n
$

D. RESULTS

When the results of the executed transactions are sent back to the user's

screen, they are displayed exactly the same way individual CODASYL-DML

requests are displayed. The following consolidates the user's options:

KEY FUNCTION
return Displays next screenful of output
(number) Displays only (number) lines of output
q Stops output, MENU1 is then redisplayed

-.

%

122

' '',,','','.""2 .''', .. '. ".. ' 3
'+,

,: . :,,. ,,,.% ,. . ...% N "-" - ' . .. ." ,, " "%



. e. I.

LIST OF REFERENCES

*tm

1. Demurjian, S. A. and Hsiao, D. K., "New Directions in Database-Systems
Research and Development," in the Proceedings of the New Directions in
Computing Conference, Trondheim, Norway, August, 1985; also in Technical
Report, NPS-52-85-001, Naval Postgraduate School, Monterey, California,
February 1985.

2. Banerjee, J. and Hsiao, D.K., "A Methodology for Supporting Existing
CODASYL Databases with New Database Machines", Proceedings of
National ACM Conference, 1978.

3. Wortherly, C. R. The Design and Analysis of a Network Interface for the
Multi-Lingual Database System , M.S. Thesis, Naval Postgraduate School,
Monterey, California, Dec 1985.

4. Hsiao, D. K., and Harary, F., "A Formal System for Information Retrieval
from Files," Communications of the ACM, Vol. 13, No. 2, February 1970,
also in Corrigenda, Vol 13., No. 4, April 1970.

5. Wong, E., and Chiang, T. C., "Canonical Structure in Attribute Based File
Organization," Communications of the ACM, September 1971.

6. Rothnie, J. B. Jr., "Attribute Based File Organization in a Paged Memory
Environment," Communications of the ACM, Vol. 17, No. 2, February 1974.

7. The Ohio State University, Columbus, Ohio, Technical Report No. OSU-
CISRC-TR-77-4, DBC Software Requirements for Supporting Network
Databases, by J. Banerjee, D. K. Hsiao,and Douglas S. Kerr November 1977.

8. Naval Postgraduate School, Monterey, California, Technical Report,
NPS52-85-002, A Multi-Backend Database System for Performance Gains,
Capacity Growth and Hardware Gains, by S. A. Demurjian, D. K. Hsiao and
J. Menon, February 1985.

9. Date, C. J., An Introduction to Database Systems , 3d ed., pp. 389-446,
Addison Wesley, 1982.

10. Boehm, B. W., Software Engineering Economics, Prentice-Hall, 1981.

11. Naval Postgraduate School, Monterey, California, Technical Report,
NPS52-84-012, Software Engineering Techniques for Large-Scale Database
Systems as Applied to the Implementation of a Multi-Backend Database
System, by Ali Orooji, Douglas Kerr and Daivid K. Hsiao, August 1984.

12. The Ohio State University, Columbus, Ohio, Technical Report No. OSU-
CISRC-TR-82-1, The Implementation of a Multi Backend Database System
(MDBS): Part I - Software Engineering Strategies and Efforts Towards a
Prototype MDBS, by D. S. Kerr et al, January 1982.

13. Kernighan, B. W., and Ritchie, D. M., The C Programming Language,

Prentice-Hall, 1978.

:

.%2

W" ' *.* * *i-*.-.



-p.. °

14. Howden, W. E., "Reliability of the Path Analysis and Testing Strategy," :
IEEE Transactions on Software Engineering, Vol. SE-2, September 1976.

15. Johnson, S. C., Yace: Yet Another Compiler-Compiler, Bell Laboratories,
Murray Hill, New Jersey, July 1978.

16. Lek, M. E. and Schmidt, E., Lex - A Lexical Analyzer Generator, Bell
Laboratories, Murray Hill, New Jersey, July 1978. %

17. Benson, T. P. and Wentz, G. L., The Design and Implementation of a
Hierarchial Interface for the Multi-Lingual Database System M. S. Thesis,
Naval Postgraduate School, Monterey, California, June 1985.

18. Meyer, G. and MacDougal, P., An Attribute value Translation of
CODASYL's Data Manipulation Language, Ohio State University, 1982.

124

.. 
, ..

-, ./%r.V..- V~WA -



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5100

3. Department Chairman, Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

4. Curricular Officer, Code 37 1
Computer Technology
Naval Postgraduate School
Monterey, California 93943-5100

5. Professor David K. Hsiao, Code 52 2
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5100

6. Steven A. Demurjian, Code 52 2
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5100

7. Turk Deniz Kuvvetleri 5:-"
Egitim Daire Baskanligi
Bakanliklar Ankara TURKEY

8. Bogazici Universitesi 1
Bilgisayar Muhendisligi
Bebek Istanbul tURKEY

9. Ahmet Emdi 1
Gazi Kemal Malh.
Firin Sok. No. 19
Babaeski/Kirklareli - TURKEY

1L25



10. Bulent Emdi2
Gazi Kemal Mah.
Firin Sok. No. 19

Babaeski/Kirklareli - TURKEY

126%



-- ~---- -

4 S

* ~
C

4 
~-.

* 9L))

- ~

**

. .. -

~44.4

* - 4~ *~FILMED ~i.~c;i
.' r.%

C:

1~

*4 *4
C'

V
w-- -4

*1

S

5%

ID
-J DTIC i.

w . - ___

'C ~

.. *%


